Discord: timostucki



Meine Aufgaben Ratings: K K

* Best Case: Ihr macht alle Aufgaben (, wenn die Zeit reicht)

* Falls nicht: Ich mache Ratings zur Wichtigkeit der einzelnen
Aufgaben

* (Keine offizielle Empfehlung, meine subjektive Meinung auf Basis
meiner eigenen Erfahrung als Student in diesem Kurs)

* | Sagen nichts uber die Schwierigkeit der Aufgaben aus !

Timo Stucki



Wichtig fur die Prufung:
(Prufungs- oder
prufungsahnliche Aufgaben)

Wichtig fur euer Verstandnis:
(Aber nicht in Prufungsform)

Wichtig fur tiefes Verstandnis/
Zusatzaufgaben:
(Bspw. viele vom gleichen Typ)

w W W

w %

Timo Stucki



w W W

Aufgabe 1:
Square Grid

In dieser Aufgabe betrachten wir gerichtete Graphen, wobei es fiir jeden Knoten ¢ héchstens
zwei gerichtete Kanten von ¢ zu anderen Knoten f, i geben kann (f, ¢, h konnen gleich sein). Wir
unterscheiden dabei zwischen der rechten und der unteren Kante (und damit dem rechten und
dem unteren Knoten).

Die Klasse Node reprisentiert einen Knoten in einem solchen Graphen. Die Methode
Node.getRight () (bzw. Node.getDown()) gibt den rechten Knoten (bzw. unteren Knoten) zurtick
(als Node-Objekt). Wenn der rechte Knoten von np nicht existiert, dann gibt Node.getRight ()
null zurlick (analog fiir den unteren Knoten). Die Methode Node.setRight(Node r) (bzw.
Node.setDown(Node d)) setzt den rechten (bzw. unteren) Knoten.

Das Ziel der Aufgabe ist, einen von einem Node-Objekt definierten Graphen zu analysieren.
Konkret geht es darum, die Grosse des grossten quadratischen Gitters in dem Graphen zu
bestimmen, der mit dem iibergebenen Node-Objekt beschrieben wird, welches den gleichen
Ursprungsknoten wie der Graph hat.




w W W

Aufgabe 1:
Square Grid

(a) (b)

Abbildung 2: Graphen mit quadratischen Gittern als Teilgraphen

Referenzen vs Objekte



w W

Aufgabe 2:
Umkehrung

In einem vorherigen Ubungsblatt haben Sie eine Linked List fiir Integers implementiert. In dieser
Aufgabe filigen Sie dieser LinkedIntList eine weitere Methode hinzu, welche die Liste umkehrt.
Eine Liste gilt als umgekehrt, wenn fiir jedes Paar von Nodes a und b, fiir welche zuvor a ==
b.next gegolten hat, in der neuen (umgekehrten) Liste b == a.next gilt. Zusdtzlich entspricht
nach der Umkehrung der erste Node der neuen Liste dem letzten Node der urspriinglichen Liste
(und umgekehrt).

Vervollstandigen Sie die Methode reverse () in der Klasse LinkedIntList. Die Methode soll,
wie oben definiert, die Liste umkehren. Achten Sie darauf, dass Sie wirklich die Reihenfolge
der Nodes selbst umkehren. Es reicht nicht aus, die Reihenfolge der enthaltenen int-Werte
umzukehren. Es miissen auch in der umgekehrten Liste dieselben Instanzen von IntNodes wie
in der urspriinglichen Liste verwendet werden. Erstellen Sie also keine neuen IntNodes mit
new IntNode().In der Datei “UmkehrungTest.java” finden Sie einen einfachen Test.



w W

Aufgabe 3:
“KI” fur das
Ratespiel

In Ubung 5 implementierten Sie ein Spiel, in welchem der Computer ein Wort auswéhlt und
der Spieler dieses erraten muss. Dort war der Spieler der Benutzer des Programms. In dieser
Aufgabe sollen Sie verschiedene “kiinstliche” Spieler entwickeln. Das heisst, anstelle des Menschen,
der tiber die Konsole Tipps eingibt, werden die Tipps von (mehr oder weniger “intelligenten”)
Programmen abgegeben. Ihr Ziel ist es, einen kiinstlichen Spieler zu entwickeln, der tiber mehrere
Spiele hinweg die Worter in so wenig Versuchen wie moglich errit.

Die Ubungsvorlage enthilt bereits den Code fiir das Ratespiel. Gegeniiber Ubung 5 ist dieser
nun in verschiedene Klassen aufgeteilt. Die drei Hauptklassen sind RateSpiel, Computer und
Spieler. Die Klasse RateSpielApp enthdlt eine main-Methode, welche das Spiel aufsetzt und
durchfiithrt. Durch die Aufteilung ist es moglich, mittels Vererbung Spieler mit unterschiedlichem
Verhalten zu schreiben. Die Klasse Spieler enthdlt ndmlich nur die Deklarationen der bendtigten
Methoden, aber keine (sinnvolle) Funktionalitiat. Subklassen von Spieler iiberschreiben diese
Methoden und definieren damit das Verhalten eines Spielers.

Ein konkreter Spieler ist ebenfalls schon in der Vorlage vorhanden: der KonsolenSpieler.
Dieser besitzt allerdings keine eigene “Intelligenz”, sondern holt sich die Tipps tiber die Konsole
vom Benutzer. Ein RateSpiel mit einem KonsolenSpieler verhalt sich also so wie das Spiel in
Ubung 5. Starten Sie die RateSpielApp und iiberzeugen Sie sich selbst.



w R K

Aufgabe 4:
Klassenratsel

In dieser Aufgabe sollen Sie zeigen, dass Sie mit Klassen und Vererbung umgehen konnen. Im
Anhang A finden Sie ein Programm, welches Instanzen von Klassen erstellt und Methoden
aufruft. Das Programm macht nichts Sinnvolles und dient nur dem Testen Ihrer Fihigkeiten. In
Anhang B befinden sich die verwendeten Klassen, jedoch sind die Klassen noch nicht vollstandig.
Bei manchen der Klassen fehlt noch die extends-Klausel, welche angibt, dass eine Klasse von
einer anderen Klasse erbt. [hre Aufgabe ist es, die nétigen extends-Klauseln hinzuzufiigen, so
dass alles kompiliert und so dass die Ausgabe des Programms von Anhang A am Ende so aussieht
wie im Anhang C gezeigt.

Der Code von Anhang A and Anhang B befindet sich in Ihrem src-Ordner. Zusétzlich enthalt
“KlassenTest.java” einen Unit-Test, welcher priift, ob die Ausgabe des Programms dem Output aus
Anhang C entspricht. Beachten Sie, dass Sie fiir diese Aufgabe ausschliesslich extends-Klauseln
hinzufiigen (diese kann es nur an den grauen Boxen aus Anhang B geben), kein anderer Code
darf verandert werden.

Tipp: Losen Sie die Aufgabe zuerst auf Papier, ohne die Hilfe von Eclipse. Sobald Sie heraus-
gefunden haben, welche Klassen von welchen Klassen erben, testen Sie Ihre Losung in Eclipse.
Dies hilft Thnen, Thr Wissen tiber Vererbung zu testen. In der Vergangenheit wurden dhnliche
Aufgaben im schriftlichen Teil der Priifung gestellt.



	Slide 1: Discord: timostucki
	Slide 2: Meine Aufgaben Ratings: 
	Slide 3: Wichtig für die Prüfung: (Prüfungs- oder  prüfungsähnliche Aufgaben)  Wichtig für euer Verständnis: (Aber nicht in Prüfungsform)  Wichtig für tiefes Verständnis/ Zusatzaufgaben: (Bspw. viele vom gleichen Typ)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

