Discord: timostucki



Meine Aufgaben Ratings: K K

* Best Case: Ihr macht alle Aufgaben (, wenn die Zeit reicht)

* Falls nicht: Ich mache Ratings zur Wichtigkeit der einzelnen
Aufgaben

* (Keine offizielle Empfehlung, meine subjektive Meinung auf Basis
meiner eigenen Erfahrung als Student in diesem Kurs)

* | Sagen nichts uber die Schwierigkeit der Aufgaben aus !

Timo Stucki



Wichtig fur die Prufung:
(Prufungs- oder
prufungsahnliche Aufgaben)

Wichtig fur euer Verstandnis:
(Aber nicht in Prufungsform)

Wichtig fur tiefes Verstandnis/
Zusatzaufgaben:
(Bspw. viele vom gleichen Typ)

w W W

w %

Timo Stucki



w W W

Aufgabe 1: Loop-
Invarianten

. Um die Loop-Invariante einfacher schreiben zu kénnen, diirfen Sie min(arr, i) benutzen.

Hier steht min(arr, i) fiir das minimale Element in dem Array arr von Index 0 bis und
mit Index i. Alternativ konnte man auch formale Notation benutzen, in dem man mit
Quantoren arbeitet. Zum Beispiel, falls m = min(arr, i), dann konnten Sie dquivalent
folgendes schreiben

Vo< j<i(arr[jl <m)

int min(int[] arr) {

// Precondition: arr != null O < arr.length
int m = arr[0];
int i = 1;

// Loop-Invariante:
while (i < arr.length) {
if (arr(i] < m) {
m = arr[i];

i++

// Postcondition: m = min(arr, arr.length)
return m;



2. String append(String stril, String str2) {

// Precondition: strl != null && str2 != null
String sl = strl;

String s2 = str2;

// Loop-Invariante:

while (!s2.equals("")) {
sl = s1 + s2.charAt(0);
s2 = s2.substring(1);

Aufgabe 1: Loop-
Invarianten }

// Postcondition: s.equals(strl + str2)
return si;

}

Achtung: Die Bedingung strl != null &% str2 != null ist wichtig, damit Aufrufe wie
s2.equals (), s2.charAt(0) und s2.substring(1) tiberhaupt moglich sind. Der Aufruf
s2.substring(1) produziert das gleiche Resultat wie s2.substring(1, s2.length()).



w W W

Aufgabe 2:
Database

In dieser Aufgabe implementieren Sie fiir eine Datenbank von Personengesundheitsdaten das De-
klassifizieren von Eintrdgen (Task a) und das Verlinken von Eintrdagen (Task b). Alle Unteraufgaben
konnen separat geldst werden.

Die Datenbank selber ist bereits mit der Klasse Database implementiert. Die Datenbank halt
eine Liste von Eintragen, welche durch die Klasse Item reprisentiert werden. Die folgenden 4
Paragraphen erkldren alle in der Vorlage gegebenen Klassen im Detail.

Item Die Klasse Item reprdasentiert einen Datenbankeintrag mit 4 Attributen: eine 1D (int), ein
Alter (int), einen Gesundheitswert (int), und ein Sicherheitslevel, welches durch die Klasse Level
reprasentiert wird. Alter und Gesundheitswert sind immer > (. Die Methoden Item.getID(),
Item.getAge (), Item.getHealth(), Item.getLevel () geben jeweils die ID, das Alter, den Ge-
sundheitswert, und das Sicherheitslevel eines Eintrags zurtick. Die Methode Item.setHealth(int
newHealth) setzt den Gesundheitswert auf newHealth. Die anderen Attribute konnen nicht gean-
dert werden.

Level Die Klasse Level reprdsentiert ein Sicherheitslevel. Ein Sicherheitslevel wird tiber eine
Liste von Integern definiert, welches in einem Attribut der Klasse Level gespeichert wird und von
der Methode Level.getPoints () zuriickgegeben wird. Ein Level A ist verwandt mit einem Level
B, falls die Summe der Werte in A.getPoints () gleich der Summe der Werte in B.getPoints ()
ist. Zum Beispiel ist das Level [1,2,3,4] verwandt mit den Levels [10] und [4, 6] (die Summe ist
tiberall 10), aber nicht mit dem Level [4,5].



w W W

Aufgabe 2:
Database

ItemFactory Die Klasse ItemFactory wird verwendet, um Datenbankeintrige zu erstellen. Die
Methode ItemFactory.createltem(Level level, int id, int age, int health) gibt ein Ex-
emplar der Klasse Item zuriick, deren Attribute mit den Argumenten initialisiert wurden.

Database Die Klasse Database reprdsentiert eine Datenbank und hat folgende vorgegebene
Methoden:

* Database.getItemFactory() gibt ein Exemplar von ItemFactory zuriick. Die ITtemFactory
I ist assoziiert mit der Datenbank D, falls T von D.getItemFactory() zuriickgegeben wird.

® Database.add(Item item) fiigt der Datenbank den Eintrag item hinzu.

¢ Database.getItems() gibt die Liste aller Eintrage zuriick, welcher der Datenbank hinzuge-
fligt wurden. Sie diirfen annehmen, dass fiir eine Datenbank D alle Eintrdge in D. getItems ()
eine einzigartige ID haben, tiber D.add hinzugefiigt wurden, tiber D.getItemFactory ()
erstellt wurden, und keiner anderen Datenbank hinzugefiigt werden. Ein hinzugefiigter
Eintrag wird nie wieder entfernt.

1. Implementieren Sie die Methode ItemFactory.createDeclass(Level level, int id, int
targetId), die einen Deklassifikationseintrag zurtickgibt. Ein Deklassifikationseintrag ist sel-
ber ein Eintrag, also ein Exemplar der Klasse Item. Ein Deklassifikationseintrag hat damit
auch eine 1D, ein Sicherheitslevel, ein Alter, und einen Gesundheitswert, welche von den



w W W

Aufgabe 2:
Database

entsprechenden getter-Methoden zurtickgegeben werden. ID und Sicherheitslevel eines
Deklassifikationseintrags sind jeweils das id und level Argument des createDeclass Auf-
rufs, mit welchem der Eintrag erstellt wurde. Das Alter und der Gesundheitswert eines
Deklassifikationseintrags sind jeweils das Alter und der Gesundheitswert des Zieleintrags
vom Deklassifikationseintrag. Der Zieleintrag von einem Deklassifikationseintrag D ist der
Eintrag E, so dass

* E.getID() gleich dem Parameter targetId ist, mit welchem D erstellt wurde; und

* E aus der Datenbank ist, mit welcher die ItemFactory assoziiert ist, mit welcher D
erstellt wurde.

Falls es keinen Zieleintrag gibt, wird eine I1legalArgumentException von der Methode
createDeclass geworfen. Beachten Sie, dass Zieleintrdge selber Deklassifikationseintrage
sein konnen. Ein Aufruf der Methode Item.setHealth(h) auf einem Deklassifikationsein-
trag hat keinen Effekt; dies wird nicht in den Tests tiberpriift.

Ein Deklassifikationseintrag R erreicht einen Eintrag A, falls entweder A der Zieleintrag von R
ist oder falls der Zieleintrag von R ein Deklassifikationseintrag ist, welcher A erreicht. Die
Methode createDeclass wirft eine I1legalArgumentException, falls der zuriickzugebene
Deklassifikationseintrag R einen Eintrag erreicht, dessen Level verwandt ist mit dem Level
von R. Zur Erinnerung: Der Paragraph tiber die Klasse Level erklart, wann zwei Level
verwandt sind.



2. Implementieren Sie die Methode Database.createLink(List<Integer> ids). Der Metho-
denaufruf D.createLink(ids) verlinkt alle Eintrage der Datenbank D miteinander, welche
eine ID haben, die im Argument ids enthalten ist. Wenn E.setHealth(h) auf einem Eintrag

ik ik ik E aufgerufen wird, dann wird der Gesundheitswert aller Eintrage, welche mit E verlinkt sind,
auf das Argument h gesetzt. Eintridge konnen beliebig oft verlinkt werden und verlinken ist
transitiv, das heisst, wenn ein Eintrag A mit einem Eintrag B verlinkt ist und B mit einem

Eintrag C verlinkt ist, dann ist A auch mit C verlinkt. Verlinken ist auch immer symmetrisch,
das heisst, wenn A mit B verlinkt ist, dann ist auch B mit A verlinkt. Zusatzlich ist verlinken

AUfga be 2: reflexiv, das heisst, ein Eintrag ist immer mit sich selber verlinkt.
Data base Der Aufruf D.createlLink(ids) soll eine I11egalArgumentException werfen, falls es eine
ID im Argument ids gibt, fiir welche es keinen Eintrag mit der gleichen ID in der Datenbank
D gibt.

Wir geben zwei Testdateien zur Verfiigung. “DatabaseTest.java” enthalt Tests, welche wir an einer
Priifung geben wiirden. “GradingDatabaseTest.java” enthilt Tests, welche wir zum Korrigieren
einer Priifung verwenden wiirden. Testen Sie Thre Losung zuerst ausgiebig mit “DatabaseTest.java”
(am besten fligen Sie selber neue Tests hinzu) und dann konnen Sie “GradingDatabaseTest.java”
verwenden, um zu sehen wie lhre Losung an einer Priifung abgeschnitten hitte.



w W ¥

Aufgabe 3:
Pyramide

Die Klasse Node reprasentiert einen Knoten in einem gerichteten Graphen, wobei es tiir jeden
Knoten 11 hochstens zwei gerichtete Kanten von 11 zu anderen Knoten 13, n3 geben kann (12 und
n3 konnen gleich sein). Wir unterscheiden dabei zwischen dem linken und dem rechten Knoten.
Die Methode Node.getLeft () gibt den linken Knoten und Node.getRight () den rechten Knoten
zurtick (als Node-Objekt). Wenn der linke Knoten von 11 nicht existiert, dann gibt Node . getLeft ()
null zuriick (analog fiir den rechten Knoten).

Das Ziel dieser Aufgabe ist, fiir ein Node-Objekt zu entscheiden, ob der durch das Node-Objekt
definierte Graph einer Pyramide entspricht. Zum Beispiel entspricht der folgende Graph einer
Pyramide.

null null null null null null



w W ¥

Aufgabe 3:
Pyramide




w W ¥

Aufgabe 3:

Pyramide

Beachten Sie, dass der rechte Knoten von 157 gleich ist wie der linke Knoten von 15, (das heisst
die Node-Objekte sind gleich!). Ein Graph (wie oben représentiert) definiert eine Pyramide genau
dann, wenn folgende Bedingungen gelten:

* Der Graph kann in k > 1 Stufen (Stufe 1, Stufe 2,..., Stufe k) aufgeteilt werden, wobei Stufe i
aus 1 unterschiedlichen Knoten n;1, nj, ..., nj; besteht. Falls der Graph k Stufen hat, dann
hat dieser genau @ unterschiedliche Knoten (Knoten aus verschiedenen Stufen sind

unterschiedlich).

e Fiir Stufe i (1 <i < k) gilt: der linke Knoten von n;; (1 < j < i) ist durch n;); gegeben und
der rechte Knoten von n;; ist durch n;, 1)(;,1) gegeben.

e Fiir Stufe k gilt: es gibt keinen linken und keinen rechten Knoten fiir n; (1 <j < k).

Die folgenden Graphen entsprechen zum Beispiel keinen Pyramiden:
Implementieren Sie die boolean isPyramid(Node node)-Methode, welche, fiir den Graph G
durch node definiert, entscheidet, ob G eine Pyramide definiert. Sie diirfen annehmen, dass G
keine Zyklen hat. Die Methode soll eine I11legalArgumentException werfen, wenn das Argument
null ist.

Tipp: Priifen Sie die Bedingungen Stufe fiir Stufe, beginnend bei Stufe 1.



w

Aufgabe 4:
Rechnungen
(erweitert)

In dieser Aufgabe erweitern Sie eine vorherige Aufgabe, in welcher ein System fiir Stromverbrau-
che Rechnungen erstellt. Konkret gibt es drei Erweiterungen: (1) Es sollen auch nicht korrekt
formatierte Eingabedateien gehandhabt werden. (2) Ein Kunde kann eine beliebige Anzahl von
Verbrauchswerten haben. (3) Es gibt eine neue Unteraufgabe b. In der folgenden Aufgabenbe-
schreibung fiir Unteraufgabe a sind die Anderung in bold markiert.

a) Vervollstindigen Sie die process-Methode in der Klasse Bills. Die Methode hat zwei Ar-
gumente: einen Scanner, von dem Sie den Inhalt der Eingabedatei lesen sollen, und einen
PrintStream, in welchen Sie die unten beschriebenen Informationen schreiben.

Ihr Programm muss auch mit manchen nicht korrekt formatierten Eingabedatein umgehen.
Die Aufgabestellung gibt an, wie mit nicht korrekt formatierten Eingaben umzugehen ist.
Ein Beispiel einer korrekt formatierten Datei finden Sie im Projekt unter dem Namen “Data.txt”.
Exceptions im Zusammenhang mit Ein- und Ausgabe konnen Sie ignorieren.

Eine valide Eingabedatei enthélt Zeilen, die entweder den Tarif, der angewendet werden
soll, oder die Daten fiir den Stromverbrauch eines Kunden beschreiben. Der Verbrauch eines
Kunden ist niemals grosser als 100000 Kilowattstunden.

Eine Tarifbeschreibung hat folgendes Format:

Tarif n_lLi_p1...ln_pPn



	Slide 1: Discord: timostucki
	Slide 2: Meine Aufgaben Ratings: 
	Slide 3: Wichtig für die Prüfung: (Prüfungs- oder  prüfungsähnliche Aufgaben)  Wichtig für euer Verständnis: (Aber nicht in Prüfungsform)  Wichtig für tiefes Verständnis/ Zusatzaufgaben: (Bspw. viele vom gleichen Typ)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13

