Discord: timostucki

Meine Aufgaben Ratings: K K

* Best Case: Ihr macht alle Aufgaben (, wenn die Zeit reicht)

* Falls nicht: Ich mache Ratings zur Wichtigkeit der einzelnen
Aufgaben

* (Keine offizielle Empfehlung, meine subjektive Meinung auf Basis
meiner eigenen Erfahrung als Student in diesem Kurs)

* | Sagen nichts uber die Schwierigkeit der Aufgaben aus !

Timo Stucki

Wichtig fur die Prufung:
(Prufungs- oder
prufungsahnliche Aufgaben)

Wichtig fur euer Verstandnis:
(Aber nicht in Prufungsform)

Wichtig fur tiefes Verstandnis/
Zusatzaufgaben:
(Bspw. viele vom gleichen Typ)

w W W

w %

Timo Stucki

Bisher haben Sie einfach verkettete Listen gesehen. Zusitzlich wurde ein IntList-Interface
eingefiihrt (siehe Anhang), welches die Methoden der Liste abstrahiert.

a) In dieser Aufgabe iiben Sie den Umgang mit Interfaces. Die Klasse LinkedIntList hat alle
Methoden, welche vom Interface IntList gefordert werden. Implementieren Sie dann eine
Methode ListUtil.addMin(IntList x), welche der Liste x die kleinste Zahl anhdngt, wel-
che in x enthalten ist. Implementieren Sie zuletzt die Methode ListUtil.addMinImpl (LinkedIntList
x), welche ebenfalls der Liste x die kleinste Zahl anhédngt, welche in x enthalten ist, aber daftir
die Methode ListUtil.addMin verwenden soll. Sie diirfen fiir beide Methoden annehmen,
AUfga be 1 . dass die iibergebene Liste mindestens ein Element enthiilt.

CyCllc LlSt b) In dieser Aufgabe implementieren Sie eine neue Variante einer Liste, die zyklische Liste,
welche ebenfalls das IntList-Interface implementiert. Zyklische Listen sind dhnlich zu
einfach verketteten Listen mit dem Unterschied, dass das next-Feld der letzten Node der
Liste, falls es einen letzten Knoten gibt, auf den ersten Node der Liste zeigt. Die Knoten der
Liste bilden also einen Zyklus. Zusétzlich hat die Liste kein Feld fiir den ersten Knoten
der Liste, da dies unnétig ist. Das Feld last, das auf den letzten Knoten zeigt, ist nach wie
vor vorhanden. Abbildung 1 zeigt eine solche zyklische Listen mit den Elementen 1, 3, 3,
7. Implementieren Sie die zyklische Liste in der Datei “CircularLinkedIntList.java”. Einige
Tests fiir die Liste finden Sie in IntListTest.

ﬁ ﬁ CircularLinkedIntlList

last :
size : 4
Aufgabe 1:
CyClic List IntNode IntNode IntNode IntNode

value: f value* i/—’ value:® V’ value: 7
next : next : next : next :D

Abbildung 1: Zyklische Liste mit Werten 1, 3, 3, 7.

Gegeben den Pre- und Postcondition formulieren Sie eine Loop-Invariante in der Datei “Loopln-
variante.txt” fiir die folgenden Programme.

1. Um die Loop-Invariante einfacher schreiben zu konnen, diirfen Sie contains(arr, c)
benutzen. Hier sagt uns contains(arr, c), ob der Char c¢ im Array arr enhalten ist.
Ebenfalls konnen Sie subarray(arr, i) benutzen, welches eine Kopie vom Array arr von
Index 0 bis und mit i darstellt. Alternativ kinnte man auch formale Notation benutzen, in
dem man mit Quantoren arbeitet.

Aufgabe 2: void erase(char[] arr, {;Ea;uii :g[c&]

// Precondition: arr
int 1 = 0;
Loop-
I 1 // Loop-Invariante:
nvariante

while (i !'= arr.length) {
if (arr[i] == c) {
arr[i] = *x?;

= 32

}

it++:

// Postcondition: 'contains(arr, c)

2. public int compute(String s, char c) {
int x;

w W W

_1,

M b
i

// Loop-Invariante:
Aufgabe 2: O g b O
LOOp- } i=x;
Invariante xmEen

// Postcondition:
// (0 <=1 && i < s.length() && s.charAt(i) == c) || count(s, c) == 0
return i;

3

Die Methode count (String s, char c) gibt zuriick wie oft der Character ¢ im String s vor-
kommt. Schreiben Sie die Loop Invariante in die Datei “LoopInvariante.txt”. Achtung: Die Aufgabe
ist schwerer als es zuerst scheint. Uberpriifen Sie lhre Losung sorgfiltig.

w

Aufgabe 3:
Expression
Evaluator

In dieser und in folgenden Ubungen werden Sie eine Reihe von Programmen schreiben, wel-
che andere Programme interpretieren, kompilieren oder (in kompilierter Form) ausfiihren. Die
Programmiersprachen definieren wir selber.

Als Einstieg schreiben Sie ein Programm, welches mathematische Ausdriicke (expressions)
auswertet. Die Ausdriicke bestehen aus Zahlen, Variablen, Operatoren wie + oder — und einfachen
Funktionen wie sin() oder cos(). Die genaue Syntax fiir diese Ausdriicke finden Sie als EBNF-
Beschreibung in Abbildung 2.

digit < 0|1]...]9

char <« A|B|...|Z|a|b]| ... |z
num <= digit { digit } [. digit { digit } |
var < char { char }

func < char { char } (

op e rl-xl/]0

open <= (

close <«)

atom <= num | var

term < open expr close | func expr close | atom
expr < term [op term |

Abbildung 2: EBNF-Beschreibung von expr

Ein Programm, das Ausdriicke auswertet, muss nattirlich entscheiden, ob eine gegebene Zei-
chenkette tiberhaupt ein giiltiger Ausdruck ist’. Das nennt man parsen und ein solches Programm
heisst Parser. Aus einer EBNF-Beschreibung wie dieser kann man einfach einen Parser erstellen®:

/* checks if the next tokens form a valid term */ /* evaluate the next tokens as a term */

void parseTerm(...) { double evalTerm(...) {
if (next token is a "open") { if (next token is a "open") {
consume "open" token consume "open" token
// check if the next tokens are a valid expr: double val = evalExpr(...);
parseExpr(...); check whether next token is a "close" & consume
check whether next token is a "close" & consume return val;
} }
else if(next token is a "func") { else if(next token is a "func") {
consume "func" token consume "func" token
// check if the next tokens are a valid expr: double arg = evalExpr(...);
AUfga be 3: parseExpr(...); check whether next token is a "close" & consume
o check whether next token is a "close" & consume double result = apply function to arg
ExpreSSIon } return result;
else { ¥
// check if the tokens are a valid atom: else {
Evaluator parseAtom(...); return evalAtom(...);
} }
} }
Abbildung 3: Parser-Methode fiir term Abbildung 4: Evaluator-Methode fiir term

* Regeln werden zu Methoden.
* Alternativen werden zu if-Anweisungen.
e Regeln auf der RHS werden zu Methodenaufrufen.

Man unterscheidet dabei zwischen zwei Arten von Regeln: Parser-Regeln und Tokenizer-Regeln.
Zuerst teilt ein Tokenizer die Zeichenkette aufgrund der Tokenizer-Regeln in eine Reihe von Tokens
auf. In unserer EBNF-Beschreibung sind die Tokenizer-Regeln rot dargestellt. Die grauen Regeln
werden zwar intern vom Tokenizer verwendet, aber erzeugen keine eigenen Tokens. Zum Beispiel
erzeugt die Zeichenkette “sin(1 + x) * 3.14” die folgende Reihe von Tokens:

ﬁ func:sin(num:1 op:+ var:x close:) op:* num:3.14

Danach entscheidet der Parser aufgrund der Parser-Regeln (oben in Schwarz dargestellt), ob
eine solche Reihe von Tokens einen giiltigen Ausdruck darstellt. Abbildung 3 zeigt, wie die
Parser-Methode fiir ferm aussehen konnte.

Aufgabe 3:

a) In der Ubungsvorlage finden Sie eine Tokenizer-Implementation, eine Vorlage fiir den

Exp ression ExprParser und eine EvaluatorApp mit einer main ()-Methode. Diese parst die vom Benutzer
E l t eingegebenen Zeichenketten und gibt an, ob sie giiltige Ausdriicke sind. Wenn der Benutzer
vawuator “exit” eingibt, terminiert das Programm. Ihre Aufgabe ist es, den ExprParser zu schreiben.

Erstellen Sie in der schon vorgegebenen parse (String)-Methode eine Tokenizer-Instanz. Die
Methoden des Tokenizers sind denen der Scanner-Klasse nachempfunden. Sie konnen also
die hasNext#*()-Methoden verwenden, um zu priifen, welche Art von Token als nidchstes
kommt, und die next* ()-Methoden, um Tokens zu “konsumieren”. Schreiben Sie die notigen
parsex(...)-Methoden, eine fiir jede Parser-Regel. Die erste lhrer parse*(...)-Methoden
rufen Sie von parse(String) aus auf. Diese Methoden sollen eine EvaluationException mit
einer sinnvollen Fehlermeldung werfen, falls die Zeichenkette kein giiltiger Ausdruck ist. Falls
z.B. nach “(” und einer expr das Token “10” statt “)” folgt, konnte die Fehlermeldung lauten:

Syntax error: unexpected token ’10’, expected ’)’

w

Aufgabe 3:
Expression
Evaluator

b) Um aus dem ExprParser einen ExprEvaluator zu machen, kann man die Methoden so dndern,

dass sie im selben Zug das Resultat berechnen. Jede Methode iiberpriift dann nicht nur, ob die
ndchsten Tokens der Regel entsprechen, sondern gibt auch gleich den Wert des entsprechenden
Ausdruck-Teils zurtick. Dies sehen Sie in Abbildung 4.

Benennen Sie die Klasse und die Methoden um?, so dass sie die neue Funktionalitit widerspie-
geln. Nun konnen Sie entscheiden: Erstens, welche Funktionen sind erlaubt? Fiir Aufgabe ??
sollten Sie mindestens sin(), cos() und tan() unterstiitzen, aber auch andere Funktionen wie
abs() oder log() konnten spiter Spass machen4. Zweitens konnen Sie entscheiden, wie Sie mit
Variablen umgehen. Sie sollten mindestens eine “x”-Variable unterstiitzen, und wir empfehlen,
dass Sie den Wert dafiir dem ExprEvaluator-Konstruktor iibergeben. Sie sollten eine Exception
werfen, falls unbekannte Funktionen oder Variablen in einem Ausdruck vorkommen.

Am Schluss sollte die EvaluatorApp das Resultat der eingegebenen Ausdriicke ausgegeben,
statt nur zu sagen, ob sie giltig sind. Wenn Sie wollen, konnen Sie dem Benutzer auch die
Mboglichkeit geben, Werte fiir Variablen zu definieren.

(AN UNMATZHED LEFT PARENTHESIS
CREATES AN UNRESOLVED TENSION
THAT WILL STRY WITH You ALL DAY.

xked: (by Randall Munroe (CC BY-NC 2.5)

ALTE PRUFUNG

w W W

Aufgabe 4:
Contact
Tracing

In dieser Aufgabe implementieren Sie eine Contact-Tracing-Applikation, welche es ermoglichen
soll, Kontakte wihrend eines Virus-Ausbruches nachzuverfolgen. Thre Implementierung soll
zundchst Begegnungen zwischen verschiedenen Person-Instanzen anonym protokollieren, so dass
bei einem positivem Test die Benachrichtigung aller Personen moglich ist, die direkt oder indirekt
mit einer positiv getesteten Person in Kontakt standen.

Anonyme Begegnungen. Um Anonymitdt zu gewdhrleisten, diirfen zwei Personen A und B bei
einer Begegnung lediglich anonyme Integer-IDs austauschen, ohne dabei die Identitit der jeweils
anderen Person aufzudecken. Beide Personen speichern hierbei sowohl die eigene ID als auch
die ID der anderen Person. Bei der positiven Testung von A kann dann mithilfe der anonymen
IDs, die A genutzt hat, festgestellt werden, ob B einer dieser IDs begegnet ist. Um zu vermeiden,
dass wiederkehrende IDs die Identifikation einer Person tiber mehrere Begegnungen hinweg
ermdglichen, benutzt jede Person fiir jede Begegnung frische IDs, welche (iber eine zentrale Klasse
ContactTracer vergeben werden. Frisch bedeutet hierbei, dass eine ID zuvor noch nie bei einer
Begegnung verwendet wurde.

Direkte und indirekte Kontakte. Nachdem eine Reihe an Begegnungen protokolliert wurden,
wird eine oder mehrere Personen positiv getestet. Mit dem erfassten Netzwerk aus Begegnungen
soll Ihre Applikation dann zwei verschiedene Arten an Kontaktpersonen bestimmten:
* Als direkte Kontakle gelten alle Personen, die eine Begegnung mit einer positiv getesteten
Person hatten.

e Als indirekte Kontakte hingegen gelten alle Personen, die zwar selbst keine Begegnung
mit einer positiv getesteten Person hatten, jedoch Kontakt mit mindestens einer anderen
Person, welche als direkter Kontakt gilt, hatten. Indirekte Kontakte mit mehr als einer
Zwischenperson miissen Sie dabei nicht berticksichtigen.

Sie diirfen dabei annehmen, dass zundchst alle Begegnungen erfasst werden und erst dann
Personen positiv getestet werden. Nach der ersten positiven Testung finden keine weiteren
Begegnungen mehr statt.

ALTE PRUFUNG

w W W

Aufgabe 4:
Contact
Tracing

Benachrichtigungen. Da nicht alle Personen gleichermassen gefdahrdet sind, soll Ihre Applika-
tion die Benachrichtigung der Kontaktpersonen vom Alter, der Art des Kontaktes, sowie dem
Testergebnis der jeweiligen Kontaktperson abhangig machen. Dabei soll eine der drei Warnstufen
Keine Benachrichtiqung, Low-Risk-Benachrichtigung oder High-Risk-Benachrichtigung ausgesprochen
werden. Zu Beginn haben alle Personen die Standard-Warnstufe Keine Benachrichtigung und
gelten als negativ getestet. Davon ausgehend sollen nach jedem registrierten positiven Test die
zugehorigen Kontaktpersonen wie folgt benachrichtigen werden:

Testergebnis der Kontaktperson | Alter der Kontaktperson || Direkter Kontakt | Indirekter Kontakt
Positiv - Keine Benachr. Keine Benachr.
Negativ < 60 Jahre alt High-Risk Keine Benachr.
Negativ = 60 Jahre alt High-Risk Low-Risk

Eine negativ getestete Person, die hochstens 60 Jahre alt ist und die nur in indirektem Kontakt
zu einer positiven Person stand, soll beispielsweise keine Benachrichtigung erhalten (Reihe 2).
Eine negativ getestete Person tiber 60 Jahre hingegen soll als indirekter Kontakt eine Low-Risk-
Benachrichtigung erhalten (Reihe 3).

Wenn mehrere Personen positiv getestet werden, soll Thre Applikation immer die hochste
geltende Warnstufe fiir die anderen, negativ getesteten Personen berechnen. Dabei ist die Ordnung
der Warnstufen wie folgt definiert: Keine Benachrichtiqung < Low-Risk Benachrichtigung < High-
Risk Benachrichtigung. Positiv getestete Personen hingegen sollen immer die Warnstufe Keine
Benachrichtigung erhalten. Im Allgemeinen diirfen Sie zudem annehmen, dass eine Person, die
einmal positiv getestet wurde, fiir den Rest der Laufzeit Ihrer Applikation als positiv getestet gilt.

ALTE PRUFUNG

Implementierung. Erweiteren Sie den vorgegebenen Code fiir die Klasse ContactTracer und
das Interface Person wie folgt, um die Contact-Tracing-Applikation umzusetzen:
Implementieren Sie das Interface Person mit den folgenden public Methoden:

* Person.getUsedIds(). Diese Methode gibt die Liste aller IDs zuriick (List<Integer>),
die fiir diese Person als frische ID verwendet wurden, um eine Begegnung zu proto-
kollieren. Nach Hinzufiligen einer ID in diese Liste muss dieselbe ID in die jeweilige

Person.getSeenlIds ()-Liste des Gegeniibers eingetragen sein.

* Person.getSeenIds(). Diese Methode gibt die Liste aller IDs zuriick (List<Integer>),
die diese Person als die frische ID des jeweiligen Gegentibers bei einer Begegnung pro-
AUfga be 4: tokolliert hat. Nach Hinzufiigen einer 1D in diese Liste muss dieselbe ID in die jeweilige

Person.getUsedIds ()-Liste des Gegen[ibers eingetragen sein.

Conta Ct * Person.getNotification(). Diese Methode gibt den aktuellen Benachrichtigungsstatus
T . der Person zuriick. Der Riickgabewert soll vom Enum-Typ NotificationType sein, welcher
raCIng vorgegeben ist und die drei moglichen Warnstufen modelliert. NotificationType ist im

Interface Person definiert und enthilt die drei Werte NoNotification (keine Benachrich-
tigung), LowRiskNotification (Low-Risk-Benachrichtigung) und HighRiskNotification
(High-Risk-Benachrichtigung).

® Person.setTestsPositively(). Diese Methode wird aufgerufen, um eine Person als po-
sitiv getestet zu markieren. Nach dem Aufrufen dieser Methode sollen automatisch al-
le Kontakte von A benachrichtigt worden sein und die entsprechenden Warnstufe per
Person.getNotification() zuriickgeben.

ALTE PRUFUNG

w W W

Aufgabe 4:
Contact
Tracing

Implementieren Sie zusétzlich die Klasse ContactTracer, welche die folgenden public Metho-
den besitzt:

* ContactTracer.registerEncounter (Person pl, Person p2). Mit dieser Methode wird
eine (beidseitige) Begegnung zwischen Person-Objekten p1 und p2 protokolliert, indem
die beiden Personen anonyme IDs austauschen. Die ausgetauschten IDs miissen dabei
unterschiedlich sein. Eine Begegnung zwischen p1 und p2 ist beidseitig und muss somit
auch als Begegnung zwischen p2 und p1 gewertet werden.

* ContactTracer.createPerson(int age). Diese Methode gibt ein Person-Objekt zurtick.
Das Alter der Person ist durch den age Parameter bestimmt.

Alle Person-Objekte werden von der Methode ContactTracer.createPerson(int age) er-
stellt. Der ContactTracer wird iiber den parameterfreien Konstruktor ContactTracer () instanzi-
iert. Sie diirfen annehmen, dass nie mehr als 1024 Begegnungen zwischen Personen protokolliert
werden.

Implementieren Sie auf Basis dieser Vorlage eine Losung fiir das Contact-Tracing-Problem.
Tests finden Sie in der Datei “ContactTracerTest.java”. Die Datei “ContactTracerGradingTest.java”
enthdlt die Tests, welche wir bei der Priifung fiir die Korrektur verwendet haben. Wir empfehlen,
diese Tests erst zu verwenden, wenn Sie denken, dass Thre Losung korrekt ist, damit Sie sehen
konnen, wie Sie bei einer Priifung abgeschnitten hatten.

	Slide 1: Discord: timostucki
	Slide 2: Meine Aufgaben Ratings:
	Slide 3: Wichtig für die Prüfung: (Prüfungs- oder prüfungsähnliche Aufgaben) Wichtig für euer Verständnis: (Aber nicht in Prüfungsform) Wichtig für tiefes Verständnis/ Zusatzaufgaben: (Bspw. viele vom gleichen Typ)
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

