Discord: timostucki



Meine Aufgaben Ratings: W N K

* Best Case: Ihr macht alle Aufgaben (, wenn die Zeit reicht)

* Falls nicht: Ich mache Ratings zur Wichtigkeit der einzelnen
Aufgaben

* (Keine offizielle Empfehlung, meine subjektive Meinung auf Basis
meiner eigenen Erfahrung als Student in diesem Kurs)

* | Sagen nichts uber die Schwierigkeit der Aufgaben aus !

Timo Stucki



Wichtig fur die Prufung:
(Prufungs- oder
prufungsahnliche Aufgaben)

Wichtig fur euer Verstandnis:
(Aber nicht in Prufungsform)

Wichtig fur tiefes Verstandnis/
Zusatzaufgaben:
(Bspw. viele vom gleichen Typ)

W W W

w W

Timo Stucki



Gegeben ist eine Postcondition fiir das folgende Programm

public int compute(String s, char c) {

// Precondition s != null
int x;
* & &
x = 0;
n = 0;

// Loop Invariante:

Aufgabe 1: Loop- while (x < s.length()) {

. if (s.charAt(x) == c) {
Invariante BEEEL

i A o

// Postcondition: count(s, c) == n
return n;

}

Die Methode count (String s, char c) gibt zurtick wie oft der Character ¢ im String s vor-
kommt. Schreiben Sie die Loop Invariante in die Datei “LoopInvariante.txt”. Tipp: Benutzen Sie
die substring Methode.



w %

Aufgabe 2:
Linked List

Bisher haben Sie Arrays verwendet, wenn Sie mit einer grosseren Anzahl von Werten gearbeitet
haben. Ein Nachteil von Arrays ist, dass die Grosse beim Erstellen des Arrays festgelegt werden
muss und danach nicht mehr verdndert werden kann. In dieser Aufgabe implementieren Sie selbst
eine Datenstruktur, bei welcher die Grosse im Vornherein nicht bestimmt ist und welche jederzeit
wachsen und schrumpfen kann: eine linked list oder verkettete Liste.

Eine verkettete Liste besteht aus mehreren Objekten, welche Referenzen zueinander haben. Fiir
diese Aufgabe besteht jede Liste aus einem “Listen-Objekt” der Klasse LinkedIntList, welches
die gesamte Liste reprasentiert, und aus mehreren “Knoten-Objekten” der Klasse IntNode, eines
fiir jeden Wert in der Liste. Die Liste heisst “verkettet”, weil jedes Knoten-Objekt ein Feld mit
einer Referenz zum néichsten Knoten in der Liste enthilt. Das LinkedIntList-Objekt schliesslich
enthalt eine Referenz zum ersten und zum letzten Knoten und hat ausserdem ein Feld fiir die
Lange der Liste.

LinkedIntList

IntNode IntNode IntNode IntNode X

value: i/‘ alue: 3'/"' alue: 3./-" i /
next : next : next : next :

Abbildung 1: Verkettete Liste mit Werten 1, 3, 3, 7.



w %

Aufgabe 2:
Linked List

Name
addLast
addFirst
removeFirst
removelast
clear
isEmpty

get

set

getSize

Parameter
int value
int value

int index
int index,
int value

Riickg.-Typ
void

void

int

int

void
boolean
int

void

int

Beschreibung

fiigt einen Wert am Ende der Liste ein

fligt einen Wert am Anfang der Liste ein
entfernt den ersten Wert und gibt ihn zurtick
entfernt den letzten Wert und gibt ihn zurtick
entfernt alle Wert in der Liste

gibt zurtick, ob die Liste leer ist

gibt den Wert an der Stelle index zurtick
ersetzt den Wert an der Stelle index mit value

gibt zurtick, wie viele Werte die Liste enthalt

Einige dieser Methoden diirfen unter gewissen Bedingungen nicht aufgerufen werden. Zum
Beispiel darf removeFirst () nicht aufgerufen werden, wenn die Liste leer ist, oder get ()
darf nicht aufgerufen werden, wenn der gegebene Index grosser oder gleich der aktuellen
Lange der Liste ist. In solchen Situationen soll sich Ihr Programm mit einer Fehlermeldung
beenden. Verwenden Sie folgendes Code-Stiick dafiir:
if(condition) {
Errors.error(message) ;

}

Ersetzen Sie condition mit der Bedingung, unter welcher das Programm beendet werden
soll, und message mit einer hilfreichen Fehlermeldung. Die Errors-Klasse befindet sich
bereits in IThrem Projekt, aber Sie brauchen sie im Moment nicht zu verstehen.



w % W

Aufgabe 3:
Executable
Graph

Alte Prufungsaufgabe aus FS22:
https://exams.vis.ethz.ch/exams/m36aalmk.pdf

In dieser Aufgabe verwenden wir gerichtete azyklische Graphen, um Programme zu reprédsentieren.
Der Programmzustand ist dabei immer durch ein Tupel (sum, counter) gegeben, wobei sum und
counter ganze Zahlen sind. Programmzustinde werden durch ProgramState-Objekte modelliert,
wobei ProgramState.getSum() (bzw. ProgramState.getCounter()) dem ersten Element (bzw.
dem zweiten Element) des Tupels entspricht.

Eine Ausfithrung des Programms manipuliert den Programmzustand und das Resultat eines
Programms ist gegeben durch den erreichten Programmzustand, nachdem alle Operationen im
Programm ausgefiihrt wurden. Programme kénnen nichtdeterministisch sein: Das heisst, fiir ein
einzelnes Programm kann es flir den gleichen Startzustand mehrere Programmaustithrungen
geben, welche zu unterschiedlichen Resultaten fiihren.

Knoten in Graphen werden durch Node-Objekte modelliert. Node.getSubnodes () gibt die
Kinderknoten als ein Array zurtick (m ist genau dann ein Kinderknoten von n, wenn es eine
ausgehende gerichtete Kante von n zu m gibt). Wir unterscheiden drei Arten von Knoten, wobei
die Methode Node.getType() die Knotenart als String zurtickgibt. Um ein Programm, welches
durch den Knoten n reprasentiert wird, auszufiihren, muss man den “Knoten n ausfiihren”. Wir
beschreiben nun die drei Knotenarten und jeweils die Ausfithrung der Knoten:



1. Additionsknoten (Node .getType () ist “ADD”): Solche Knoten besitzen einen Additionswert
ﬁ ﬁ ﬁ a gegeben durch Node . getValue () (eine ganze Zahl) und bei der Ausfiihrung dieses Knotens
wird der Programmzustand von (sum, counter) zu (sum -+ a,counter + 1) aktualisiert. Die

Kinderknoten von solchen Knoten werden bei der Ausfiihrung ignoriert.

2. Sequenzknoten (Node.getType () ist “SEQ"): Bei der Ausfiihrung eines Sequenzknoten n
AUfga be 3: werden die Kinderknoten von n nacheinander ausgefiihrt. Die Reihenfolge in welcher die
Kinderknoten ausgefiihrt werden spielt keine Rolle, da der erreichte Programmzustand fiir

Exec uta ble jede Reihenfolge gleich ist. Node.getValue () ist irrelevant.

Gra ph 3. Auswahlknoten (Node.getType () ist “CHOICE”): Bei der Ausfiihrung eines Auswahlknoten
n wird ein beliebiger Kinderknoten von n ausgewdhlt und ausgefiihrt. Node.getValue () ist
irrelevant. Diese Knoten fiihren zu Nichtdeterminismus.

Sie diirfen davon ausgehen, dass Sequenz- und Auswahlknoten immer mindestens einen
Kinderknoten haben, und dass es zwischen zwei Knoten immer hochstens einen Pfad gibt. Die
folgende Abbildung zeigt zwei Beispielgraphen, wobei Knoten mit der Beschriftung “SEQ” (bzw.
“CHOICE") Sequenzknoten (bzw. Auswahlknoten) entsprechen und die Zahlen in Additionsknoten
den Additionswerten entsprechen.



w W W

Aufgabe 3:
Executable
Graph




w W

Aufgabe 4:
Energiespiel

In dieser Aufgabe iiben Sie den Umgang mit Enums. Dafiir haben Sie einen Ordner EnergieSpiel
mit drei Klassen GameApp, Game und Player, sowie ein Enum Character. Diese sind bereits so
implementiert, dass alles funktioniert. Die Klasse Player hat jedoch ein Feld character von Typ
String. Java ldsst also zu, dass in diesem Feld ein beliebiger String abgespeichert werden kann.
Das Spiel hat aber eigentlich nur genau drei Moglichkeiten: HONEST, TRICKSTER oder SORCEROR.
Das Enum Character mit diesen drei Optionen existiert bereits. Andern Sie den Typ des Feldes
zu Character und passen Sie den Code in allen drei Klassen so an, dass die Charakter-Logik
tiberall den Typ Character statt String verwendet.

10



Aufgabe 5:

Timed
Bonus

NICHT VERGESSEN

Die Bonusaufgabe fiir diese Ubung wird erst am Dienstag Abend der Folgewoche (also am 18.
11.) um 17:00 Uhr publiziert und Sie haben dann 2 Stunden Zeit, diese Aufgabe zu l6sen. Der
Abgabetermin fiir die anderen Aufgaben ist wie gewohnt am Dienstag Abend um 23:59. Bitte
planen Sie Thre Zeit entsprechend. Checken Sie mit IntelliJ, wie bisher, die neue Ubungs-Vorlage
aus. Importieren Sie das Intelli]-Projekt wie bisher.

11



