252-0027

Einflihrung in die Programmierung
Ubungen

Woche 9: Klassen, Verlinkte Objekte

Timo Stucki
Departement Informatik
ETH Ziirich

Organisatorisches

= Mein Name: Timo Stucki

= Bei Fragen: tistucki@student.ethz.ch
Mails bitte mit «[EProg25]» im Betreff
= Neue Aufgaben: Dienstag Abend (im Normalfall)
= Abgabe der Ubungen bis Dienstag Abend (23:59) Folgewoche

= Abgabe immer via Git

Losungen in separatem Projekt auf Git

Discord: timostucki

Webseite

&]:
I
[=]

= timostucki.com

Probleme LOsen

Probleme Losen: Labyrinth

Aufgabe 1: Labyrinth (2021 W8)

Ein Labyrinth besteht aus einer Menge von Raumen, welche durch die Klasse Room dargestellt
werden. Die Klasse hat zwei Attribute: Der Integer age (grosser gleich 0) beschreibt das Alter des
Raums und der Array doorsTo (nie null) beschreibt die Tiiren von diesem Raum zu anderen
Raumen. Alle Tiiren sind Falltiiren, d.h. sie funktionieren nur in eine Richtung. Ein Raum ist
ein Ausgang aus dem Labyrinth, wenn keine Tiiren von dem Raum wegfiihren, das heisst, wenn
doorsTo eine Lénge von 0 hat.

Fur alle Aufgaben werden Sie in einen zufélligen Raum geworfen, welcher als Argument
gegeben wird (garantiert nicht null) und von welchem aus Sie die Aufgabe losen miissen. Sie
diirfen fiir alle Aufgaben annehmen, dass es im Labyrinth keinen Zyklus gibt. Das heisst, dass
man einen Raum, welchen man durch eine Tiire verlassen hat, nie wieder erreichen kann indem
man weiteren Tiiren folgt. Eine Sequenz von N Raumen ry,...,ry ist ein Lisungspfad fiir einen
Raum room genau dann wenn: (1) Der erste Raum rq ist der Raum room, (2) der letzte Raum ry
ist ein Ausgang, und (3) jeder Raum r; mit 1 < i < N hat eine Tiir zum nichsten Raum in der
Sequenz ry1.

Probleme Losen: Labyrinth

Aufgabe 1: Labyrinth (2021 W8)

Ein Labyrinth besteht aus einer Menge von Raumen, welche durch die Klasse Room dargestellt
werden. Die Klasse hat zwei Attribute: Der Integer age (grosser gleich 0) beschreibt das Alter des
Raums und der Array doorsTo (nie null) beschreibt die Tiiren von diesem Raum zu anderen
Raumen. Alle Tiiren sind Falltiiren, d.h. sie funktionieren nur in eine Richtung. Ein Raum ist
ein Ausgang aus dem Labyrinth, wenn keine Tiiren von dem Raum wegfiihren, das heisst, wenn
doorsTo eine Lange von 0 hat.

Fiir alle Aufgaben werden Sie in einen zufilligen Raum geworfen, welcher als Argument
gegeben wird (garantiert nicht null) und von welchem aus Sie die Aufgabe l6sen miissen. Sie
diirfen fiir alle Aufgaben annehmen, dass es im Labyrinth keinen Zyklus gibt. Das heisst, dass
man einen Raum, welchen man durch eine Tiire verlassen hat, nie wieder erreichen kann indem
man weiteren Tiiren folgt. Eine Sequenz von N Raumen rq,...,ry ist ein Lisungspfad fiir einen
Raum room genau dann wenn: (1) Der erste Raum rq ist der Raum room, (2) der letzte Raum ry
ist ein Ausgang, und (3) jeder Raum r; mit 1 < i < N hat eine Tiir zum ndchsten Raum in der
Sequenz r;.

Probleme Losen: Labyrinth

Ausgang wenn:
e r.doorsTo.length == ©

Losungspfad rq, ..., ry wenn:

M A ist room (der Raum der uns gegeben wird)

* ry ist ein Ausgang

 r;und r;,q sind jeweils durch eine Tur verbunden.

man weiteren Tiiren folgt. Eine Sequenz von N Rdumen ry,...,ry ist ein Losungspfad fiir einen
Raum room genau dann wenn: (1) Der erste Raum rq ist der Raum room, (2) der letzte Raum ry
ist ein Ausgang, und (3) jeder Raum r; mit 1 < i < N hat eine Tiir zum ndchsten Raum in der
Sequenz 7.

Probleme Losen: Labyrinth

1. Implementieren Sie die Methode Labyrinth.taskl (Room room). Die Methode soll true
zurtickgeben genau dann, wenn es einen Losungspfad r(,. .., ry fiir room gibt, sodass:

 Fiir jede Teilsequenz 1y, ..., r; mit 1 <i < N gilt, dass die Summe der Alter der Riume
1, ..., r; nicht durch 3 teilbar ist.

2. Implementieren Sie die Methode Labyrinth.task2(Room room). Die Methode soll true
zuriickgeben genau dann, wenn es zwei Losungspfade rq,...,ry und sq,...,sy flir room
gibt, sodass:

* Die Rdume r; und s; haben das gleiche Alter fiir jedes i mit 1 <i < N.

* Fiir mindestens ein 7 mit 1 <i < N gilt, dass 7; und s; unterschiedlich sind (verschiedene
DL o)

TRCTCTCTTECTTTS

=

Sie diirfen Methoden und Felder der Klasse Room hinzufiigen. Tests finden Sie in der Datg

Wichtig! “LabyrinthTest.java”. Tipp: Losen Sie die Aufgaben rekursiv. Fiir keine der Atifgaben miisseh
Sie alle Pfade generieren und dann erst priifen, dass die Eigenschaften gelten. Manche der Tes}

enthalten Labyrinthe mit einer extrem grossen Anzahl an Pfaden aber leichten Losungen.

2]

Room {

. Was befindet sich in der Room Klasse?
int age;

Room[] doorsTo;

age-Attribut (grosser gleich 0)

doorsTo-Attribut (nie null)

Room(int age, Room[] doorsTo) {
raBSES EEE, isExit()-Methode: Priift ob ein Raum ein
.doorsTo = doorsTo;

Ausgang ist.
}
: : getAge()-Methode: Getter-Methode fur die das
boolean isExit() {]
age Attribut. Ublicherweise waren Attribute einer
return doorsTo.length == 0;
} Klasse private und nur tber Getter- / Setter-
Methoden erreichbar. Hier der Einfachheit halber
int getAge() { weggelassen.

return age;

Was befindet sich in der Labyrinth-Klasse?

Labyrinth {
» Code-Skeleton fur Aufgabe 1 und Aufgabe 2.

boolean taskl(Room room)

return 5

boolean task2(Room room)

return 5

Probleme Losen: Labyrinth

1. Implementieren Sie die Methode Labyrinth.taskl(Room room). Die Methode soll true
zurilickgeben genau dann, wenn es einen Losungspfad rq, ..., ry fiir room gibt, sodass:

e Fiir jede Teilsequenz ry,...,r; mit 1 <i < N gilt, dass die Summe der Alter der Rdume
1, ..., r; nicht durch 3 teilbar ist.

Wie losen wir das Problem?

* Rekursive Losung: Damit wir das Problem rekursiv I6sen konnen,
mussen wir Teilprobleme identifizieren.

Teilprobleme identifizieren:

* Angenommen wir befinden uns
in einem Raum r; wie wissen
wir ob der Pfad ry, ..., r; eine
Losung ist?

« Wir nennen die Eigenschaft
einer Summe keine
Teilsequenz zu besitzen, deren
Alterssumme ein Vielfaches
von drei ist ab hier die TS-
Eigenschaft.

13

Teilprobleme identifizieren (Versuch 1):

* Angenommen wir befinden uns in
einem Raum r; wie wissen wir ob der
Pfad ry, ..., r; die TS-Eigenschaft
erfullt?

TS-Eigenschaft erfullt

 Was wenn ry, ..., r;_, bereits die TS-
Eigenschaft erfullt?

e Das reicht nicht. Wieso?

* Falls die Summe der Alter vorher 22
ist, dann 22 % 3 !'= 0 aber (22 + 11) %
3==0.

14

age = 11

TS-Eigenschaft erfullt

age = 11

. + Wir kennen die Summe.

Teilprobleme identifizieren (Versuch 1):

* Angenommen wir befinden uns in
einem Raum r; wie wissen wir ob der
Pfad ry, ..., r; die TS-Eigenschaft
erfullt?

« Was wenn ry, ..., 1;_, die Alterssumme
sum hat und sum % 3 != 0 ist?

e Das reicht. Wieso?

« Wir prifen ob (sum + age) % 3!=0
ist und dann Wissen wir das r, ..., 1;
ebenfalls die TS-Eigenschaft erfulit.

15

boolean solvel(Room room, int sum) {

Wie losen wir das Problem?
sum = sum + room.age;

Wir nehmen an, dass sum die Summe der

if(sum % 3 == @) { vorherigen Raume enthalt.
return 5 Wir nehmen an, dass die vorherigen
} Raume die TS-Eigenschaft erflllen.

Dann erhohen wir sum um das Alter von
if(room.isExit()) { room und prufen, ob die neue Summe

nicht durch 3 teilbar ist. (Sonst beenden wir die

return 5 Suche auf dem jetzigen Pfad)

}

for(int 1 = @; i < room.doorsTo.length; ++i) {

Wir prufen ob der jetzige Raum ein
Ausgang ist. (Wenn ja, dann sind wir fertig.)

if(solvel(room.doorsTo[i], sum)) {
Sonst rufen wir die Methode rekursiv fur
alle Raume auf, mit denen Room verbunden
} ist. (Das diirfen wir, da es keine Zyklen hat)

return 5

Falls einer der Aufrufe erfolgreich war,
return 5 dann geben wir true, sonst false zuruck.
16

boolean solvel(Room room, int sum) {

Wie nutzen wir diese Methode nun?

Wirrufen solvel in taskl auf mit room
und initialer Summe 0.

boolean taskl(Room room) {

solvel(room, O)

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion, ausser wir merken uns explizit, in
welchen Raumen wir bereits waren.

18

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Raumen wir bereits waren.

19

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Raumen wir bereits waren.

20

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Raumen wir bereits waren.

21

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Raumen wir bereits waren.

22

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Raumen wir bereits waren.

23

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Raumen wir bereits waren.

24

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Raumen wir bereits waren.

25

Wieso keine Zyklen?

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Raumen wir bereits waren.

26

Probleme Losen: Labyrinth

2. Implementieren Sie die Methode Labyrinth.task2(Room room). Die Methode soll true
zurtickgeben genau dann, wenn es zwei Losungspfade rq,...,ry und sy,...,sy fiir room
gibt, sodass:

¢ Die Rdume r; und s; haben das gleiche Alter fiir jedes i mit 1 < i < N.

* Fir mindestens ein i mit1 <i < N gilt, dass r; und s; unterschiedlich sind (verschiedene
Referenzen).

Wie losen wir das Problem?

* Rekursive Losung: Damit wir das Problem rekursiv I6sen konnen,
mussen wir Teilprobleme identifizieren.

Teilprobleme identifizieren:

« Wir betrachten jetzt zwei
Raume r; und s; und zwei
Pfade ry, ...,7; und
sS4, ..., S; Wobei r; und s; beide
der Raum Room sind.

« Was mussen wir Uber die
Teilsequenzen 4, ..., 7;_; und
Sq1, .., S;j_1 wissen?

 Wir nehmen an, dass die
beiden Teilsequenzen die
Alterbedingung erfullen.

28

Teilprobleme identifizieren:

 Falls sich die Pfade bereits getrennt
haben, so prufen wir ob r; und s; beide
Ausgange sind und das gleiche Alter
haben. (Falls ja dann sind wir fertig.)

« Sonst erkunden wir alle moglichen
Pfadpaare (1,41, Sj+1)-

 Wie merken wir uns ob sich die Pfade
bereits getrennt haben?

Mit einem boolean Parameter

29

public static boolean solve2(Room rooml, Room room2, boolean samePath) {

if(rooml.isExit() && room2.isExit() && !samePath) {

return true;
}
for(int i = @; i < rooml.doorsTo.length; ++i) {

for(int k = @; k < room2.doorsTo.length; ++k) {

if(rooml.doorsTo[i].age == room2.doorsTo[k].age) {
if(solve2(rooml.doorsTo[i], room2.doorsTo[k], (samePath & & rooml == room2)))

return true;

}

return false;

30

public static boolean solve2(Room rooml, Room room2, boolean samePath) {

if(rooml.isExit() && room2.isExit() && !samePath) {

return true;
}
for(int i = @; i < rooml.doorsTo.length; ++i) {

for(int k = @; k < room2.doorsTo.length; ++k) {

if(rooml.doorsTo[i].age == room2.doorsTo[k].age) {
if(solve2(rooml.doorsTo[i], room2.doorsTo[k], (samePath & & rooml == room2)))

return true;

}

return false;

31

public static boolean solve2(Room rooml, Room room2, boolean samePath) {

if(rooml.isExit() && room2.isExit() && !samePath) {

return true;
}
for(int i = @; i < rooml.doorsTo.length; ++i) {

for(int k = @; k < room2.doorsTo.length; ++k) {

if(rooml.doorsTo[i].age == room2.doorsTo[k].age) {
if(solve2(rooml.doorsTo[i], room2.doorsTo[k], (samePath & & rooml == room2)))

return true;

}

return false;

32

public static boolean solve2(Room rooml, Room room2, boolean samePath) {

if(rooml.isExit() && room2.isExit() && !samePath) {

return true;
}
for(int i = @; i < rooml.doorsTo.length; ++i) {

for(int k = @; k < room2.doorsTo.length; ++k) {

if(rooml.doorsTo[i].age == room2.doorsTo[k].age) {
if(solve2(rooml.doorsTo[i], room2.doorsTo[k], (samePath & & rooml == room2)))

return true;

}

return false;

33

public static boolean solve2(Room rooml, Room room2, boolean samePath) {

if(rooml.isExit() && room2.isExit() && !samePath) {

return true;
}
for(int i = @; i < rooml.doorsTo.length; ++i) {

for(int k = @; k < room2.doorsTo.length; ++k) {

if(rooml.doorsTo[i].age == room2.doorsTo[k].age) {
if(solve2(rooml.doorsTo[i], room2.doorsTo[k], (samePath & & rooml == room2)))

return true;

}

return false;

34

boolean solvel(Room room, int sum) {

Dies gibt uns die
Losung

Wir rufen solvel in

taskl auf mit room
boolean taskl(Room room) { und initialer Summe

solvel(room, O) 9.

Wir rufen solve2 in

task2 auf mit room

und initialem

boolean Parameter
boolean solve2(Room rooml, Room room2, boolean samePath) { true.

boolean task2(Room room) {

return solve2(room, room,);

Mit gerichteten Zyklen Arbeiten

Probleme Losen: Labyrinth (modified)

Aufgabe 1: Labyrinth (2021 W8)

Ein Labyrinth besteht aus einer Menge von Raumen, welche durch die Klasse Room dargestellt
werden. Die Klasse hat zwei Attribute: Der Integer age (grosser gleich 0) beschreibt das Alter des
Raums und der Array doorsTo (nie null) beschreibt die Tiiren von diesem Raum zu anderen
Raumen. Alle Tiiren sind Falltiiren, d.h. sie funktionieren nur in eine Richtung. Ein Raum ist
ein Ausgang aus dem Labyrinth, wenn keine Tiiren von dem Raum wegfiihren, das heisst, wenn
doorsTo eine Lange von 0 hat.

Fiir alle Aufgaben werden Sie in einen zufilligen Raum geworfen, welcher als Argument
gegeben w1rd (garantiert nicht null) und von welchem aus Sle die Aufgabe l6sen miissen. Ste-

man-einenRaum snelchen man durch eine Tiire verlassen hat, nie wieder erreicherarmrircent

man-weiteren Tiren-folet: Eine Sequenz von N Rdaumen ry,...,ry ist ein Losungspfad fiir einen

Raum room genau dann wenn: (1) Der erste Raum rq ist der Raum room, (2) der letzte Raum ry
ist ein Ausgang, und (3) jeder Raum r; mit 1 < i < N hat eine Tiir zum ndchsten Raum in der
Sequenz r;.

Gerichtete Zyklen fuhren zu Problemen

* Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
wir Raumen wir bereits waren.

 Wie merken wir uns in welchen Raumen wir bereits
waren?

« Spater: Sets

o Jetzt: Benutzen eines visited Attributs.

38

Probleme Losen: Labyrinth

1. Implementieren Sie die Methode Labyrinth.taskl(Room room). Die Methode soll true
zurtickgeben genau dann, wenn es einen Losungspfad 7, ..., ry flir room gibt, sodass:

* Fiir jede Teilsequenz 74, ...,r; mit 1 <7 < N gilt, dass die Summe der Alter der Rdume
ri,...,¥; nicht durch 3 teilbar ist.

2. Implementieren Sie die Methode Labyrinth.task2(Room room). Die Methode soll true
zuriickgeben genau dann, wenn es zwei Losungspfade r1,...,7ry und sj,...,sy fiir room
gibt, sodass:

. . * Die Rdume 7; und s; haben das gleiche Alter fiir jedes i mit 1 <i < N.
Das kdnnen wir

aushutzen! ¢ Fiir mindestens ein i mit 1 < i < N gilt, dass r; und s; unterschiedlich sind (verschiedene

Referenzen).

\ Sie diirfen Methoden und Felder der Klasse Room hinzufiigen. Tests finden Sie in der Datei
“LabyrinthTest.java”.
Tipp: Losen Sie die Aufgaben rekursiv. Fiir keine der Aufgaben miissen Sie alle Pfade generieren
und dann erst priifen, dass die Eigenschaften gelten. Manche der Tests enthalten Labyrinthe mit
einer extrem grossen Anzahl an Pfaden aber leichten Losungen.

Room {
boolean visited = 5
int age;

Room[] doorsTo;

Room(int age, Room[] doorsTo) {
.age = age;

.doorsTo = doorsTo;

boolean isExit() {

return doorsTo.length == 0;

int getAge() {

return age;

Wir modifizieren die Klasse Room.

Wir figen ein boolean visited Attribut hinzu.

Wir setzen visited auf false fur jedes Room-
Objekt und auf true, wenn wir den Raum
besucht haben.

Initialisiert das visited Attribut
fur jedes Objekt mit false.

boolean solvel(Room room, int sum) {

if(!room.visited) {

room.visited = ; Wir prufen ob room bereits auf
unserem Pfad liegt.

sum = sum + room.age;

if(sum % 3 == @) {room.visited = ; return 5}

if(room.isExit()) {room.visited = ;5 return 5)

for(int i = @; i < room.doorsTo.length; ++i) {

if(solvel(room.doorsTo[i], sum)) {

room.visited = ;
return 5
room.visited = ;

return 5

boolean solvel(Room room, int sum) {

if(!room.visited) {

room.visited = ;

sum = sum + room.age; Wir merken uns, dass room neu
auf unserem Pfad liegt.

if(sum % 3 == @) {room.visited = ; return 5}

if(room.isExit()) {room.visited = ;5 return 5)

for(int i = @; i < room.doorsTo.length; ++i) {

if(solvel(room.doorsTo[i], sum)) {

room.visited = ;
return 5
room.visited = ;

return 5

boolean solvel(Room room, int sum) {
if(!room.visited) {
room.visited = ;

sum = sum + room.age;

if(sum % 3 == @) {room.visited = ; return 5}

if(room.isExit()) {room.visited = ;5 return 5)

for(int i = @; i < room.doorsTo.length; ++i) { WirfUhre_n den gleichen Code
wie vorhin aus.

if(solvel(room.doorsTo[i], sum)) {

room.visited = ;
return 5
room.visited = ;

return 5

boolean solvel(Room room, int sum) {
if(!room.visited) {
room.visited = ;

sum = sum + room.age;

if(sum % 3 == @) {room.visited = ; return 5}

if(room.isExit()) {room.visited = ;5 return 5)

for(int i = @; i < room.doorsTo.length; ++i) {

if(solvel(room.doorsTo[i], sum)) {

room.visited = 5
return 5
b
} Wir setzen das Attribut wieder
zuruck, da wir solvel mehrmals
} auf dem gleichen Labyrinth
room.visited = 9 ausfuhren wollen.

return 5

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

[0 nicht visited

f“.ﬁ-.-,b%g visited
—

45

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

46

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

47

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

48

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

49

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

50

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

51

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

52

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

53

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

54

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

55

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

56

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

57

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

Lésungspfad gefunden!

58

L ;&Ej Lésungspfad gefunden!
—

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

e <
~
iy ®

W, 56 visited

59

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

8 Losungspfad gefunden!

60

Wieso funktioniert das?
« Betrachten wir ein Beispiel mit

i$ nicht visited

&

visited

11
|BE,
—

61

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

62

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

63

‘ sT= ! Lésungspfad gefunden! Wieso funktioniert daS?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

64

Wieso funktioniert das?

« Betrachten wir ein Beispiel mit

- RE

ITtH
qLNTT:
—

nicht visited

- R
o8 =

[visited
—

65

B <
A

Wieso funktioniert das?

zipi(Mme| P
il.ﬁ‘l"lh _‘ fir:_:ll ~ :
,‘PL"E$ 1 Iup'#;
.. —
Lésungspfad gefynden!

« Betrachten wir ein Beispiel mit

- RE

] W]|
“"‘“‘I‘bbé
—

nicht visited

o8 =

[visited
—

66

-
.
i
-
f -
)
Vo)
)
©
=
-
=
n
n
(@)
=
-
T
D
(@)
(@
|
o
Ll

Enums

Kontext: Mogliches Spiel

public class Player {

private ??? name;
Player haben private 227 role;

Namen — beliebig private int energy;

Rolle — «honest» oder «trickster»

Energielevel — steigt/fallt wahrend des Spiels
Anderung hangt (auch) von Rolle ab

:

Game verwaltet alle Spieler in Player[] players

Frage: Wie Spieler-Rollen umsetzen?

Erste Version Player und Game

public class Player { public class Game {
private String name; private Player[] players;
private String role; private Random random;

private int energy;

public void energize(int value) { public void energizeAll() {
energy += value; for (int 1 = 0; 1 < players.length; i++) {

} Player player = players[i];

} if (player.role.equals("HONEST")) {
_ player.energize(1);
Rolle als Stl’lngs } else i1f (player.role.equals("TRICKSTER")) {
modelliert — gute ldee? player.energize(random.nextInt(-4, 5));
}
}
}

}

Besser: Mit Enhums

Vorteile?

Loop - Invarianten

Wir wollen das folgende Hoare Triple beweisen:

{ Precondition }
while () { Body };
{ Postcondition }

Dies kdnnen wir tun, falls eine Invariante existiert, fur welche Folgendes gilt:

—_

1. Precondition = Invariante

2. { A Invariante }
Body;
{ Invariante } istein valides Tripel.

Das funktioniert nicht immer...
>_

3. - A Invariante = Postcondition

—_

74

Wir wollen das folgende Hoare Triple beweisen:
{ Precondition }

while () { Body };
{ Postcondition }
Dies kdonnen wir tun, falls eine Invariante existiert, fur welche folgendes gilt:
1. { Precondition } { Invariante } istein valides Tripel.
2. { A Invariante }

Body;

{ Invariante } istein valides Tripel.

3. { - A Invariante } { Postcondition } istein valides
Tripel.

75

Vorbesprechung

Gegeben ist eine Postcondition fiir das folgende Programm

public int compute(String s, char c) {
// Precondition s != null
int x;
int n;

Aufgabe 1:

// Loop Invariante:

Loop_ while (x < s.length()) {

if (s.charAt(x) == c) {

Invariante)

n=n-+1;
=x + 1;
// Postcondition: count(s, c) ==

return n;

}

Die Methode count(String s, char c) gibt zuriick wie oft der Character ¢ im String s vor-
kommt. Schreiben Sie die Loop Invariante in die Datei “LoopInvariante.txt”. Tipp: Benutzen Sie
die substring Methode.

Aufgabe 2:
Linked

List

Bisher haben Sie Arrays verwendet, wenn Sie mit einer grosseren Anzahl von Werten gearbeitet
haben. Ein Nachteil von Arrays ist, dass die Grisse beim Erstellen des Arrays festgelegt werden
muss und danach nicht mehr verandert werden kann. In dieser Aufgabe implementieren Sie selbst
eine Datenstruktur, bei welcher die Grosse im Vornherein nicht bestimmt ist und welche jederzeit
wachsen und schrumpfen kann: eine linked list oder verkettete Liste.

Eine verkettete Liste besteht aus mehreren Objekten, welche Referenzen zueinander haben. Fiir
diese Aufgabe besteht jede Liste aus einem “Listen-Objekt” der Klasse LinkedIntList, welches
die gesamte Liste reprasentiert, und aus mehreren “Knoten-Objekten” der Klasse IntNode, eines
fiir jeden Wert in der Liste. Die Liste heisst “verkettet”, weil jedes Knoten-Objekt ein Feld mit
einer Referenz zum nichsten Knoten in der Liste enthalt. Das LinkedIntList-Objekt schliesslich
enthdlt eine Referenz zum ersten und zum letzten Knoten und hat ausserdem ein Feld fiir die
Lange der Liste.

IntNode IntNode IntNode IntNode X
value: i/ value: i/ value: 3./ value: 7./
next : next : next : next :

Abbildung 1: Verkettete Liste mit Werten 1, 3, 3, 7.

78

Aufgabe 2:
Linked

List

Name Parameter Riickg.-Typ Beschreibung

addLast int value void fligt einen Wert am Ende der Liste ein

addFirst int value void fligt einen Wert am Anfang der Liste ein

removeFirst int entfernt den ersten Wert und gibt ihn zuriick

removeLast int entfernt den letzten Wert und gibt ihn zurtick

clear void entfernt alle Wert in der Liste

isEmpty boolean gibt zurtick, ob die Liste leer ist

get int index int gibt den Wert an der Stelle index zuriick

set int index, void ersetzt den Wert an der Stelle index mit value
int value

getSize int gibt zurtick, wie viele Werte die Liste enthalt

Einige dieser Methoden diirfen unter gewissen Bedingungen nicht aufgerufen werden. Zum
Beispiel darf removeFirst () nicht aufgerufen werden, wenn die Liste leer ist, oder get ()
darf nicht aufgerufen werden, wenn der gegebene Index grosser oder gleich der aktuellen
Lange der Liste ist. In solchen Situationen soll sich Thr Programm mit einer Fehlermeldung
beenden. Verwenden Sie folgendes Code-Stiick dafiir:

if (condition) {

Errors.error(message) ;

}
Ersetzen Sie condition mit der Bedingung, unter welcher das Programm beendet werden
soll, und message mit einer hilfreichen Fehlermeldung. Die Errors-Klasse befindet sich
bereits in Threm Projekt, aber Sie brauchen sie im Moment nicht zu verstehen.

79

Aufgabe 3:

Executable
Graph

In dieser Aufgabe verwenden wir gerichtete azyklische Graphen, um Programme zu reprasentieren.
Der Programmzustand ist dabei immer durch ein Tupel (sum, counter) gegeben, wobei sum und
counter ganze Zahlen sind. Programmzustinde werden durch ProgramState-Objekte modelliert,
wobei ProgramState.getSum() (bzw. ProgramState.getCounter()) dem ersten Element (bzw.
dem zweiten Element) des Tupels entspricht.

Eine Ausfithrung des Programms manipuliert den Programmzustand und das Resultat eines
Programms ist gegeben durch den erreichten Programmzustand, nachdem alle Operationen im
Programm ausgefiihrt wurden. Programme konnen nichtdeterministisch sein: Das heisst, fiir ein
einzelnes Programm kann es fiir den gleichen Startzustand mehrere Programmausfithrungen
geben, welche zu unterschiedlichen Resultaten fithren.

Knoten in Graphen werden durch Node-Objekte modelliert. Node.getSubnodes() gibt die
Kinderknoten als ein Array zuriick (m ist genau dann ein Kinderknoten von 1, wenn es eine
ausgehende gerichtete Kante von n zu m gibt). Wir unterscheiden drei Arten von Knoten, wobei
die Methode Node.getType() die Knotenart als String zuriickgibt. Um ein Programm, welches
durch den Knoten n reprasentiert wird, auszufiihren, muss man den “Knoten n ausfithren”. Wir
beschreiben nun die drei Knotenarten und jeweils die Ausfiihrung der Knoten:

80

Aufgabe 3:

Executable
Graph

1. Additionsknoten (Node.getType () ist “ADD"): Solche Knoten besitzen einen Additionswert
a gegeben durch Node. getValue () (eine ganze Zahl) und bei der Ausfithrung dieses Knotens
wird der Programmzustand von (sum, counter) zu (sum + a,counter + 1) aktualisiert. Die
Kinderknoten von solchen Knoten werden bei der Ausfithrung ignoriert.

2. Sequenzknoten (Node.getType () ist “SEQ"): Bei der Ausfiihrung eines Sequenzknoten n
werden die Kinderknoten von n nacheinander ausgefiithrt. Die Reihenfolge in welcher die
Kinderknoten ausgefiihrt werden spielt keine Rolle, da der erreichte Programmzustand fiir
jede Reihenfolge gleich ist. Node.getValue () ist irrelevant.

3. Auswahlknoten (Node.getType () ist “CHOICE"): Bei der Ausfithrung eines Auswahlknoten
n wird ein beliebiger Kinderknoten von n ausgewdhlt und ausgefiihrt. Node.getValue () ist
irrelevant. Diese Knoten fithren zu Nichtdeterminismus.

Sie diirfen davon ausgehen, dass Sequenz- und Auswahlknoten immer mindestens einen
Kinderknoten haben, und dass es zwischen zwei Knoten immer hochstens einen Pfad gibt. Die
folgende Abbildung zeigt zwei Beispielgraphen, wobei Knoten mit der Beschriftung “SEQ” (bzw.
“CHOICE") Sequenzknoten (bzw. Auswahlknoten) entsprechen und die Zahlen in Additionsknoten
den Additionswerten entsprechen.

81

Aufgabe 3:

Executable
Graph

82

Aufgabe 4:

Energiespiel

In dieser Aufgabe iiben Sie den Umgang mit Enums. Dafiir haben Sie einen Ordner EnergieSpiel
mit drei Klassen GameApp, Game und Player, sowie ein Enum Character. Diese sind bereits so
implementiert, dass alles funktioniert. Die Klasse Player hat jedoch ein Feld character von Typ
String. Java ldsst also zu, dass in diesem Feld ein beliebiger String abgespeichert werden kann.
Das Spiel hat aber eigentlich nur genau drei Moglichkeiten: HONEST, TRICKSTER oder SORCEROR.
Das Enum Character mit diesen drei Optionen existiert bereits. Andern Sie den Typ des Feldes
zu Character und passen Sie den Code in allen drei Klassen so an, dass die Charakter-Logik
tiberall den Typ Character statt String verwendet.

83

Aufgabe 5:
Timed

Bonus

Die Bonusaufgabe fiir diese Ubung wird erst am Dienstag Abend der Folgewoche (also am 18.
11.) um 17:00 Uhr publiziert und Sie haben dann 2 Stunden Zeit, diese Aufgabe zu ldsen. Der
Abgabetermin fiir die anderen Aufgaben ist wie gewohnt am Dienstag Abend um 23:59. Bitte
planen Sie Thre Zeit entsprechend. Checken Sie mit Intelli], wie bisher, die neue Ubungs-Vorlage
aus. Importieren Sie das Intelli]-Projekt wie bisher.

84

Nachbesprechung

Aufgabe 1:

Close
Neighbors

Schreiben Sie ein Programm, welches fiir eine sortierte Folge X von int-Werten (x1,x2,..., X5)
und einen int-Wert key die drei unterschiedlichen Elemente x,, x; und x, aus X zuriickgibt, die
dem Wert key am niéchsten sind. Fiir x,, x;, und x. muss gelten, dass [key — x,| < |[key — x| <
|key — x| < |key — x| fiir alle i # a,b,c und dass x, # x}, # x. # ¥,. Wenn die drei Werte nicht
eindeutig bestimmt sind, dann ist jede Losung zugelassen, die die obige Bedingung erfullt.

Beispiele:

Die nachsten Nachbarn fiir key == 5in (1,4,5,7,9,10) sind 5,4, 7.

Die nichsten Nachbarn fiir key == 51in (1,4,5,6,9,10) sind 5,4, 6 oder 5,6, 4.
Die nichsten Nachbarn fiir key == 10 in (1,4,5,6,9,10) sind 10,9, 6.

Implementieren Sie die Berechnung in der Methode int[] neighbor(int[] sequence, int
key), welche sich in der Klasse Neighbor befindet. Die Deklaration der Methode ist bereits vorge-
geben. Sie kdnnen davon ausgehen, dass das Argument sequence nicht null ist, sortiert ist, nur
unterschiedliche Elemente enthilt, und mindestens drei Elemente enthalt. Denken Sie daran, dass
der Wert key nicht unbedingt in der Folge X auftritt. Sie diirfen das Eingabearray input nicht
dndern.

In der main Methode der Klasse Neighbor finden Sie die oberen Beispiele als kleine Tests, welche
Beispiel-Aufrufe zur neighbor-Methode machen und welche Sie als Grundlage fiir weitere Tests
verwenden koénnen. In der Datei NeighborTest . java geben wir die gleichen Tests zusitzlich auch
als JUnit Test zur Verfligung. Sie kénnen diese ebenfalls nach belieben dndern. Es wird nicht
erwartet, dass Sie fiir diese Aufgabe den JUnit Test verwenden.

86

Aufgabe 2

Loop-
Invariante

public int compute(int n) {

// Precondition: =n >= 0
int x;

int res;
x = 0;
res = X;

// Loop Invariante:
while (x <= n) {
res = res + Xx;
X =x + 1;
}
// Postcondition: res ==
return res;

((n+1) #n) /2

Schreiben Sie die Loop Invariante in die Datei “LoopInvariante.txt”.

1. Gegeben sind die Precondition und Postcondition fiir das folgende Programm

87

2. Gegeben sind die Precondition und Postcondition fiir das folgende Programm.

public int compute(int a, int b) {
// Precondition: a >= 0
int x;
int res;

Aufgabe 2: ‘-0

res = b;

Loop-
Invariante while (x < a) {

res = res - 1;
X =x+1;

// Loop Invariante:

}
// Postcondition: res == b - a
return res;

Schreiben Sie die Loop Invariante in die Datei “Looplnvariante.txt”.

88

Aufgabe 3:

Bills

In dieser Aufgabe sollen Sie einen Teil des Systems implementieren, das fiir den lokalen Stromver-
sorger die Rechnungen erstellt.

Vervollstindigen Sie die process-Methode in der Klasse Bills. Die Methode hat zwei Ar-
gumente: einen Scanner, von dem Sie den Inhalt der Eingabedatei lesen sollen, und einen
PrintStream, in welchen Sie die unten beschriebenen Informationen schreiben.

Ihr Programm muss nur korrekt formatierte Eingabedateien unterstiitzen. Ein Beispiel einer
solchen Datei finden Sie im Projekt unter dem Namen “Data.txt”. Exceptions im Zusammenhang
mit Ein- und Ausgabe konnen Sie ignorieren.

Eine valide Eingabedatei enthélt Zeilen, die entweder einen Tarif oder den Stromverbrauch
eines Kunden beschreiben. Der Verbrauch eines Kunden ist niemals grosser als 100000 Kilowatt-
stunden.

Eine Tarifbeschreibung hat folgendes Format:

Tarif_n_lLi_p1 .. InPn

89

Aufgabe 4:

Minesweeper
(Bonus)

IS
(IS

| /1114
1 Y RNt -

click click click

Empty Cell with

Empty Cell no Mines Around

Mine

Abbildung 1: Spielbretter nach dem ersten, zweiten und dritten Klick von links nach rechts.

Achtung: Diese Aufgabe gibt Bonuspunkte (siehe “Leistungskontrolle” im www.vvz.ethz.ch). Die
Aufgabe muss eigenhindig und alleine gelst werden. Die Abgabe erfolgt wie gewohnt per Push
in Thr Git-Repository auf dem ETH-Server. Verbindlich ist der letzte Push vor dem Abgabetermin.
Auch wenn Sie vor der Deadline committen, aber nach der Deadline pushen, gilt dies als eine zu
spite Abgabe. Bitte lesen Sie zusétzlich die allgemeinen Regeln.

90

	Slide 1
	Slide 2: Organisatorisches
	Slide 3
	Slide 4
	Slide 5: Probleme Lösen
	Slide 6: Probleme Lösen: Labyrinth
	Slide 7: Probleme Lösen: Labyrinth
	Slide 8: Probleme Lösen: Labyrinth
	Slide 9: Probleme Lösen: Labyrinth
	Slide 10
	Slide 11
	Slide 12: Probleme Lösen: Labyrinth
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Probleme Lösen: Labyrinth
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Mit gerichteten Zyklen Arbeiten
	Slide 37: Probleme Lösen: Labyrinth (modified)
	Slide 38
	Slide 39: Probleme Lösen: Labyrinth
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Enums
	Slide 70: Kontext: Mögliches Spiel
	Slide 71: Erste Version Player und Game
	Slide 72: Besser: Mit Enums
	Slide 73: Loop - Invarianten
	Slide 74
	Slide 75
	Slide 76: Vorbesprechung
	Slide 77: Aufgabe 1: Loop-Invariante
	Slide 78: Aufgabe 2: Linked List
	Slide 79: Aufgabe 2: Linked List
	Slide 80: Aufgabe 3: Executable Graph
	Slide 81: Aufgabe 3: Executable Graph
	Slide 82: Aufgabe 3: Executable Graph
	Slide 83: Aufgabe 4: Energiespiel
	Slide 84: Aufgabe 5: Timed Bonus
	Slide 85: Nachbesprechung
	Slide 86: Aufgabe 1: Close Neighbors
	Slide 87: Aufgabe 2: Loop-Invariante
	Slide 88: Aufgabe 2: Loop-Invariante
	Slide 89: Aufgabe 3: Bills
	Slide 90: Aufgabe 4: Minesweeper (Bonus)

