
252-0027

Einführung in die Programmierung
Übungen

Woche 9: Klassen, Verlinkte Objekte

Timo Stucki
Departement Informatik
ETH Zürich

Organisatorisches

▪ Mein Name: Timo Stucki

▪ Bei Fragen: tistucki@student.ethz.ch

▪ Mails bitte mit «[EProg25]» im Betreff

▪ Neue Aufgaben: Dienstag Abend (im Normalfall)

▪ Abgabe der Übungen bis Dienstag Abend (23:59) Folgewoche

▪ Abgabe immer via Git

▪ Lösungen in separatem Projekt auf Git

2

Probleme Lösen

Probleme Lösen: Labyrinth

6

Probleme Lösen: Labyrinth

7

Probleme Lösen: Labyrinth

8

Ausgang wenn:
• r.doorsTo.length == 0

Lösungspfad 𝒓𝟏, … , 𝒓𝑵 wenn:

• 𝒓𝟏 ist room (der Raum der uns gegeben wird)

• 𝒓𝑵 ist ein Ausgang

• 𝒓𝒊 und 𝒓𝒊+𝟏 sind jeweils durch eine Tür verbunden.

Probleme Lösen: Labyrinth

9

Wichtig!

public class Room {

int age;

public Room[] doorsTo;

public Room(int age, Room[] doorsTo) {

this.age = age;

this.doorsTo = doorsTo;

}

public boolean isExit() {

return doorsTo.length == 0;

}

public int getAge() {

return age;

}

}

Was befindet sich in der Room Klasse?

• age-Attribut (grosser gleich 0)

• doorsTo-Attribut (nie null)

• isExit()-Methode: Prüft ob ein Raum ein

Ausgang ist.

• getAge()-Methode: Getter-Methode für die das

age Attribut. Üblicherweise wären Attribute einer

Klasse private und nur über Getter- / Setter-

Methoden erreichbar. Hier der Einfachheit halber

weggelassen.

10

public class Labyrinth {

public static boolean task1(Room room)

{

// TODO

return false;

}

public static boolean task2(Room room)

{

// TODO

return false;

}

}

Was befindet sich in der Labyrinth-Klasse?

• Code-Skeleton für Aufgabe 1 und Aufgabe 2.

11

Probleme Lösen: Labyrinth

12

Wie lösen wir das Problem?

• Rekursive Lösung: Damit wir das Problem rekursiv lösen können,

müssen wir Teilprobleme identifizieren.

Teilprobleme identifizieren:

• Angenommen wir befinden uns
in einem Raum 𝑟𝑖 wie wissen
wir ob der Pfad 𝑟1, … , 𝑟𝑖 eine
Lösung ist?

• Wir nennen die Eigenschaft
einer Summe keine
Teilsequenz zu besitzen, deren
Alterssumme ein Vielfaches
von drei ist ab hier die TS-
Eigenschaft.

13

Teilprobleme identifizieren (Versuch 1):

• Angenommen wir befinden uns in
einem Raum 𝑟𝑖 wie wissen wir ob der
Pfad 𝑟1, … , 𝑟𝑖 die TS-Eigenschaft
erfüllt?

• Was wenn 𝑟1, … , 𝑟𝑖−1bereits die TS-
Eigenschaft erfüllt?

• Das reicht nicht. Wieso?

• Falls die Summe der Alter vorher 22
ist, dann 22 % 3 != 0 aber (22 + 11) %
3 == 0.

14

𝑟𝑖

𝑟𝑖−1

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

TS-Eigenschaft erfüllt

age = 11

Teilprobleme identifizieren (Versuch 1):

• Angenommen wir befinden uns in
einem Raum 𝑟𝑖 wie wissen wir ob der
Pfad 𝑟1, … , 𝑟𝑖 die TS-Eigenschaft
erfüllt?

• Was wenn 𝑟1, … , 𝑟𝑖−1 die Alterssumme
sum hat und sum % 3 != 0 ist?

• Das reicht. Wieso?

• Wir prüfen ob (sum + age) % 3 != 0
ist und dann Wissen wir das 𝑟1, … , 𝑟𝑖
ebenfalls die TS-Eigenschaft erfüllt.

15

𝑟𝑖

𝑟𝑖−1

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

TS-Eigenschaft erfüllt

+ Wir kennen die Summe.

age = 11

public static boolean solve1(Room room, int sum) {

sum = sum + room.age;

if(sum % 3 == 0) {

return false;

}

if(room.isExit()) {

return true;

}

for(int i = 0; i < room.doorsTo.length; ++i) {

if(solve1(room.doorsTo[i], sum)) {

return true;

}

}

return false;

}

Wie lösen wir das Problem?

• Wir nehmen an, dass sum die Summe der

vorherigen Räume enthält.

• Wir nehmen an, dass die vorherigen

Räume die TS-Eigenschaft erfüllen.

• Dann erhöhen wir sum um das Alter von

room und prüfen, ob die neue Summe

nicht durch 3 teilbar ist. (Sonst beenden wir die

Suche auf dem jetzigen Pfad)

• Wir prüfen ob der jetzige Raum ein

Ausgang ist. (Wenn ja, dann sind wir fertig.)

• Sonst rufen wir die Methode rekursiv für

alle Räume auf, mit denen Room verbunden

ist. (Das dürfen wir, da es keine Zyklen hat)

• Falls einer der Aufrufe erfolgreich war,

dann geben wir true, sonst false zurück.
16

public static boolean solve1(Room room, int sum) {

(…)

}

public static boolean task1(Room room) {

return solve1(room, 0)

}

Wie nutzen wir diese Methode nun?

• Wir rufen solve1 in task1 auf mit room
und initialer Summe 0.

17

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion, ausser wir merken uns explizit, in
welchen Räumen wir bereits waren.

18

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Räumen wir bereits waren.

19

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Räumen wir bereits waren.

20

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Räumen wir bereits waren.

21

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Räumen wir bereits waren.

22

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Räumen wir bereits waren.

23

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Räumen wir bereits waren.

24

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Räumen wir bereits waren.

25

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Wieso keine Zyklen?

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
Räumen wir bereits waren.

26

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Probleme Lösen: Labyrinth

27

Wie lösen wir das Problem?

• Rekursive Lösung: Damit wir das Problem rekursiv lösen können,

müssen wir Teilprobleme identifizieren.

Teilprobleme identifizieren:

• Wir betrachten jetzt zwei
Räume 𝑟𝑖 und 𝑠𝑖 und zwei
Pfade 𝑟1, … , 𝑟𝑖 und
𝑠1, … , 𝑠𝑖 wobei 𝑟1 und 𝑠1 beide
der Raum Room sind.

• Was müssen wir über die
Teilsequenzen 𝑟1, … , 𝑟𝑖−1 und
𝑠1, … , 𝑠𝑖−1 wissen?

• Wir nehmen an, dass die
beiden Teilsequenzen die
Alterbedingung erfüllen.

28

Teilprobleme identifizieren:

• Falls sich die Pfade bereits getrennt
haben, so prüfen wir ob 𝑟𝑖 und 𝑠𝑖 beide
Ausgänge sind und das gleiche Alter
haben. (Falls ja dann sind wir fertig.)

• Sonst erkunden wir alle möglichen
Pfadpaare (𝑟𝑖+1, 𝑠𝑖+1).

• Wie merken wir uns ob sich die Pfade
bereits getrennt haben?

Mit einem boolean Parameter

29

𝑟𝑖

𝑟𝑖−1

𝑟1
𝑟2

𝑟3

𝑟4

𝑠4

age = 11

𝑠𝑖−1

𝑠2
𝑠1

𝑠3

age = 31

𝑠𝑖

𝑟5

public static boolean solve2(Room room1, Room room2, boolean samePath) {

if(room1.isExit() && room2.isExit() && !samePath) {

return true;

}

for(int i = 0; i < room1.doorsTo.length; ++i) {

for(int k = 0; k < room2.doorsTo.length; ++k) {

if(room1.doorsTo[i].age == room2.doorsTo[k].age) {

if(solve2(room1.doorsTo[i], room2.doorsTo[k], (samePath && room1 == room2))) {

return true;

}

}

}

}

return false;

}

30

Pfade haben sich getrennt und

beide Räume sind Ausgänge

public static boolean solve2(Room room1, Room room2, boolean samePath) {

if(room1.isExit() && room2.isExit() && !samePath) {

return true;

}

for(int i = 0; i < room1.doorsTo.length; ++i) {

for(int k = 0; k < room2.doorsTo.length; ++k) {

if(room1.doorsTo[i].age == room2.doorsTo[k].age) {

if(solve2(room1.doorsTo[i], room2.doorsTo[k], (samePath && room1 == room2))) {

return true;

}

}

}

}

return false;

}

31

Falls die Pfade sich getrennt haben und nur einer der Pfade ein Ausgang ist, dann terminiert einer der for loops ohne Ausführung des bodies.

dann landen wir hier

public static boolean solve2(Room room1, Room room2, boolean samePath) {

if(room1.isExit() && room2.isExit() && !samePath) {

return true;

}

for(int i = 0; i < room1.doorsTo.length; ++i) {

for(int k = 0; k < room2.doorsTo.length; ++k) {

if(room1.doorsTo[i].age == room2.doorsTo[k].age) {

if(solve2(room1.doorsTo[i], room2.doorsTo[k], (samePath && room1 == room2))) {

return true;

}

}

}

}

return false;

}

32

Hier generieren wir die Raumpaare

public static boolean solve2(Room room1, Room room2, boolean samePath) {

if(room1.isExit() && room2.isExit() && !samePath) {

return true;

}

for(int i = 0; i < room1.doorsTo.length; ++i) {

for(int k = 0; k < room2.doorsTo.length; ++k) {

if(room1.doorsTo[i].age == room2.doorsTo[k].age) {

if(solve2(room1.doorsTo[i], room2.doorsTo[k], (samePath && room1 == room2))) {

return true;

}

}

}

}

return false;

}

33

Ist es ein valides Paar?

public static boolean solve2(Room room1, Room room2, boolean samePath) {

if(room1.isExit() && room2.isExit() && !samePath) {

return true;

}

for(int i = 0; i < room1.doorsTo.length; ++i) {

for(int k = 0; k < room2.doorsTo.length; ++k) {

if(room1.doorsTo[i].age == room2.doorsTo[k].age) {

if(solve2(room1.doorsTo[i], room2.doorsTo[k], (samePath && room1 == room2))) {

return true;

}

}

}

}

return false;

}

34

Wir prüfen den rekursiven Aufruf und wir geben

weiter, ob der Pfad sich getrennt hat.

public static boolean solve1(Room room, int sum) {

(…)

}

public static boolean task1(Room room) {

return solve1(room, 0)

}

public static boolean solve2(Room room1, Room room2, boolean samePath) {

(…)

}

public static boolean task2(Room room) {

return solve2(room, room, true);

}

Dies gibt uns die

Lösung

• Wir rufen solve1 in

task1 auf mit room
und initialer Summe

0.

• Wir rufen solve2 in

task2 auf mit room
und initialem

boolean Parameter

true.

35

Mit gerichteten Zyklen Arbeiten

Probleme Lösen: Labyrinth (modified)

37

Gerichtete Zyklen führen zu Problemen

• Wenn wir Zyklen haben kommt es zu endloser
Rekursion ohne, dass wir uns merken, in welchen
wir Räumen wir bereits waren.

• Wie merken wir uns in welchen Räumen wir bereits
waren?

• Später: Sets

• Jetzt: Benutzen eines visited Attributs.

38

𝑟6

𝑟1
𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Probleme Lösen: Labyrinth

39

Das können wir

ausnutzen!

public class Room {

boolean visited = false;

int age;

public Room[] doorsTo;

public Room(int age, Room[] doorsTo) {

this.age = age;

this.doorsTo = doorsTo;

}

public boolean isExit() {

return doorsTo.length == 0;

}

public int getAge() {

return age;

}

}

Wir modifizieren die Klasse Room.

• Wir fügen ein boolean visited Attribut hinzu.

• Wir setzen visited auf false für jedes Room-

Objekt und auf true, wenn wir den Raum

besucht haben.

40

Initialisiert das visited Attribut

für jedes Objekt mit false.

41

Wir prüfen ob room bereits auf

unserem Pfad liegt.

public static boolean solve1(Room room, int sum) {

if(!room.visited) {

room.visited = true;

sum = sum + room.age;

if(sum % 3 == 0) {room.visited = false; return false; }

if(room.isExit()) {room.visited = false; return true; }

for(int i = 0; i < room.doorsTo.length; ++i) {

if(solve1(room.doorsTo[i], sum)) {

room.visited = false;

return true;

}

}

}

room.visited = false;

return false;

}

42

Wir merken uns, dass room neu

auf unserem Pfad liegt.

public static boolean solve1(Room room, int sum) {

if(!room.visited) {

room.visited = true;

sum = sum + room.age;

if(sum % 3 == 0) {room.visited = false; return false; }

if(room.isExit()) {room.visited = false; return true; }

for(int i = 0; i < room.doorsTo.length; ++i) {

if(solve1(room.doorsTo[i], sum)) {

room.visited = false;

return true;

}

}

}

room.visited = false;

return false;

}

43

Wir führen den gleichen Code

wie vorhin aus.

public static boolean solve1(Room room, int sum) {

if(!room.visited) {

room.visited = true;

sum = sum + room.age;

if(sum % 3 == 0) {room.visited = false; return false; }

if(room.isExit()) {room.visited = false; return true; }

for(int i = 0; i < room.doorsTo.length; ++i) {

if(solve1(room.doorsTo[i], sum)) {

room.visited = false;

return true;

}

}

}

room.visited = false;

return false;

}

44

Wir setzen das Attribut wieder

zurück, da wir solve1 mehrmals

auf dem gleichen Labyrinth

ausführen wollen.

public static boolean solve1(Room room, int sum) {

if(!room.visited) {

room.visited = true;

sum = sum + room.age;

if(sum % 3 == 0) {room.visited = false; return false; }

if(room.isExit()) {room.visited = false; return true; }

for(int i = 0; i < room.doorsTo.length; ++i) {

if(solve1(room.doorsTo[i], sum)) {

room.visited = false;

return true;

}

}

}

room.visited = false;

return false;

}

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

45

46

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

47

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

48

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

49

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

50

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

51

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

52

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

53

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

54

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

55

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

56

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

57

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

58

Lösungspfad gefunden!

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

59

Lösungspfad gefunden!

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

60

Lösungspfad gefunden!

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

61

Lösungspfad gefunden!

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

62

Lösungspfad gefunden!

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

63

Lösungspfad gefunden!

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

64

Lösungspfad gefunden! Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

65

Lösungspfad gefunden!

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Wieso funktioniert das?

66

Lösungspfad gefunden!

Wieso funktioniert das?

• Betrachten wir ein Beispiel mit

nicht visited

visited

Enums

Kontext: Mögliches Spiel

• Player haben

• Namen – beliebig

• Rolle – «honest» oder «trickster»

• Energielevel – steigt/fällt während des Spiels

• Änderung hängt (auch) von Rolle ab

• Game verwaltet alle Spieler in Player[] players

• Frage: Wie Spieler-Rollen umsetzen?

public class Player {

private ??? name;

private ??? role;

private int energy;

…

}

70

Erste Version Player und Game

public class Player {

private String name;

private String role;

private int energy;

…

public void energize(int value) {

energy += value;

}

}

public class Game {

private Player[] players;

private Random random;

…

public void energizeAll() {

for (int i = 0; i < players.length; i++) {

Player player = players[i];

if (player.role.equals("HONEST")) {

player.energize(1);

} else if (player.role.equals("TRICKSTER")) {

player.energize(random.nextInt(-4, 5));

}

}

}

}

Rolle als Strings

modelliert – gute Idee?

71

Besser: Mit Enums

public class Player {

private String name;

private Role role;

private int energy;

…

}

public class Game {

private Player[] players;

private Random random;

…

public void energizeAll() {

for (int i = 0; i < players.length; i++) {

Player player = players[i];

if (player.role == Role.HONEST) {

player.energize(1);

} else if (player.role == Role.TRICKSTER) {

player.energize(random.nextInt(-4, 5));

}

}

}

}

public enum Role {

HONEST,

TRICKSTER,

SOCERER,

}

Vorteile?

72

Loop - Invarianten

Wir wollen das folgende Hoare Triple beweisen:

{ Precondition }
while (Condition) { Body };

{ Postcondition }

Dies können wir tun, falls eine Invariante existiert, für welche Folgendes gilt:

1. Precondition ⇒ Invariante

2. { Condition ٿ Invariante }
Body;

{ Invariante } ist ein valides Tripel.

3. ¬ Condition ٿ Invariante ⇒ Postcondition

Das funktioniert nicht immer…

74

Wir wollen das folgende Hoare Triple beweisen:

{ Precondition }
Codeblock1
while (Condition) { Body };
Codeblock2

{ Postcondition }

Dies können wir tun, falls eine Invariante existiert, für welche folgendes gilt:

1. { Precondition } Codeblock1; { Invariante } ist ein valides Tripel.

2. { Condition ٿ Invariante }
Body;

{ Invariante } ist ein valides Tripel.

3. { ¬ Condition ٿ Invariante } Codeblock2; { Postcondition } ist ein valides

Tripel.

75

Vorbesprechung

Aufgabe 1:
Loop-

Invariante

Aufgabe 2:
Linked

List

Aufgabe 2:
Linked

List

Aufgabe 3:
Executable

Graph

Aufgabe 3:
Executable

Graph

Aufgabe 3:
Executable

Graph

Aufgabe 4:
Energiespiel

Aufgabe 5:
Timed
Bonus

Nachbesprechung

Aufgabe 1:
Close

Neighbors

Aufgabe 2:
Loop-

Invariante

Aufgabe 2:
Loop-

Invariante

Aufgabe 3:
Bills

Aufgabe 4:
Minesweeper

(Bonus)

	Slide 1
	Slide 2: Organisatorisches
	Slide 3
	Slide 4
	Slide 5: Probleme Lösen
	Slide 6: Probleme Lösen: Labyrinth
	Slide 7: Probleme Lösen: Labyrinth
	Slide 8: Probleme Lösen: Labyrinth
	Slide 9: Probleme Lösen: Labyrinth
	Slide 10
	Slide 11
	Slide 12: Probleme Lösen: Labyrinth
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Probleme Lösen: Labyrinth
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36: Mit gerichteten Zyklen Arbeiten
	Slide 37: Probleme Lösen: Labyrinth (modified)
	Slide 38
	Slide 39: Probleme Lösen: Labyrinth
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68: Enums
	Slide 70: Kontext: Mögliches Spiel
	Slide 71: Erste Version Player und Game
	Slide 72: Besser: Mit Enums
	Slide 73: Loop - Invarianten
	Slide 74
	Slide 75
	Slide 76: Vorbesprechung
	Slide 77: Aufgabe 1: Loop-Invariante
	Slide 78: Aufgabe 2: Linked List
	Slide 79: Aufgabe 2: Linked List
	Slide 80: Aufgabe 3: Executable Graph
	Slide 81: Aufgabe 3: Executable Graph
	Slide 82: Aufgabe 3: Executable Graph
	Slide 83: Aufgabe 4: Energiespiel
	Slide 84: Aufgabe 5: Timed Bonus
	Slide 85: Nachbesprechung
	Slide 86: Aufgabe 1: Close Neighbors
	Slide 87: Aufgabe 2: Loop-Invariante
	Slide 88: Aufgabe 2: Loop-Invariante
	Slide 89: Aufgabe 3: Bills
	Slide 90: Aufgabe 4: Minesweeper (Bonus)

