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Einführung in die Programmierung
Übungen

Woche 10: Verlinkte Objekte, Klassen

Timo Stucki
Departement Informatik
ETH Zürich



Organisatorisches

▪ Mein Name: Timo Stucki

▪ Bei Fragen: tistucki@student.ethz.ch

▪ Mails bitte mit «[EProg25]» im Betreff

▪ Neue Aufgaben: Dienstag Abend (im Normalfall)

▪ Abgabe der Übungen bis Dienstag Abend (23:59) Folgewoche

▪ Abgabe immer via Git

▪ Lösungen in separatem Projekt auf Git
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• ADD Node: Enthalten value a und wir setzen (sum, counter) auf (sum + a, counter + 1).  

Kinderknoten werden bei der Ausführung ignoriert.

• SEQ Node: Kinderknoten werden nacheinander ausgeführt. Reihenfolge ist egal.  

Das value Attribut wird ignoriert.

• CHOICE Node: Ein beliebiger Knoten wird ausgeführt. Das value Attribut wird ignoriert.

Probleme Lösen: Executable Graph
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Wie lösen wir das Problem?

• Wir nutzen eine Helfermethode allResultsGo welche statt nur einem Programmstate eine

Liste von Programmstates als Parameter hat.

• ADD: Für alle Zwischenresultate addiere value dazu, erhöhe den Counter um 1 und füge das 

Resultat zu next hinzu. 

• SEQ: Rufe für alle Kinderknoten die Methode allResultsGo auf. Wir speichern die 

zurückgegebene Liste und nutzen diese als Parameter für den nächsten Kinderknoten. 

• CHOICE: Rufe für alle Kinderknoten die Methode allResultsGo auf. Wir berechnen die 

Resultate für jeden Kinderknoten separat und fügen die Listen zusammen. 

53



public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

if (n.getType().equals("ADD")) { 

LinkedProgramStateList next = new LinkedProgramStateList();

for (int i = 0; i < states.size; i += 1) { 

ProgramState state = states.get(i);

next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));

}

return next;

}

(…)

}

54

Neue Liste wird

erstellt, da wir nicht

states ändern wollen.



public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

if (n.getType().equals("ADD")) { 

LinkedProgramStateList next = new LinkedProgramStateList();

for (int i = 0; i < states.size; i += 1) { 

ProgramState state = states.get(i);

next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));

}

return next;

}

(…)

}
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Für jedes Zwischenresult in der Liste states wird value zur Summe

hinzugefügt und der Counter erhöht. 



public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

if (n.getType().equals("ADD")) { 

LinkedProgramStateList next = new LinkedProgramStateList();

for (int i = 0; i < states.size; i += 1) { 

ProgramState state = states.get(i);

next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));

}

return next;

}

(…)

}
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Für jedes Zwischenresult in der Liste states wird value zur Summe

hinzugefügt und der Counter erhöht. 



public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

(…)

} else if (n.getType().equals("SEQ")) {

LinkedProgramStateList next = states;

for (Node ch : n.getSubnodes()) { //Recursively update the results

next = allResultsGo(ch, next);

}

return next;

} 

(…)

}

57

Wir verändern die Liste auf welche states verweist

nicht, weil wir bei ADD notes eine neue Liste

erstellen. Hier wird aber keine Kopie erstellt!



public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

(…)

} else if (n.getType().equals("SEQ")) {

LinkedProgramStateList next = states;

for (Node ch : n.getSubnodes()) {

next = allResultsGo(ch, next);

}

return next;

} 

(…)

}
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Wir rufen für jeden

Kinderknoten die 

Methode rekursiv auf.



public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

(…)

} else if (n.getType().equals("CHOICE")) {

LinkedProgramStateList next = new LinkedProgramStateList();

for (Node ch : n.getSubnodes()) {

LinkedProgramStateList results = allResultsGo(ch, states);

for (int i = 0; i < results.size; i += 1) {

next.addLast(results.get(i));

}

}

return next;

}

return null;

}
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Für jeden Kinderknoten wird eine

Liste zurückgegeben und wir

fügen diese dann zusammen.



Klassen: Neural Network
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Klassen: Neural Network

62

Ziel: AI in Java. Dafür brauchen wir Neuronale Netwerke (NNs)

• Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk

modelliert.

Neuron
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Ziel: AI in Java. Dafür brauchen wir Neuronale Netwerke (NNs)

• Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk
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Ziel: AI in Java. Dafür brauchen wir Neuronale Netwerke (NNs)

• Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk

modelliert.

Zwei Layers l1
und l2 welche

durch Kanten

verbunden sind, 

welche jeweils ein

Gewicht besitzen.

l1

l2
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Ziel: AI in Java. Dafür brauchen wir Neuronale Netwerke (NNs)

• Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk

modelliert.

Das NN



Klassen: Neural Network
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Das Neural Netzwerk ist aber nicht nur eine Ansammlung an Layers, Weights und 

Neuronen (was einen Typ definiert). Es besitzt zusätzlich ein Verhalten, welches durch

Methoden der Klasse definiert wird.

Das NN



public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

67



public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

6868

Attribut – private access modifier

Klasse (gespeichert in Neuron.java) – public access modifier

Wir wollen, dass jeder die Klasse nutzen kann, 

aber der Zugriff auf die Attribute nur durch

Methoden der Klasse erlaubt ist.



public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

6969

Konstruktoren

Getter und Setter Methoden



public class Layer {
private Neuron[] neurons;
private double[] weights;

public Layer(Neuron[] neurons, double[] weights) {
this.neurons = neurons;
this.weights = weights;

}

public Layer() {
this(null, null);

}

public double[] getWeights() {
return weights;

}

public void setWeights(double[] weights) {
this.weights = weights;

}

public void changeWeight(int index, double value) {
this.weights[index] = value;

}
}

70

Ein Benutzer kann nach dem Erstellen eines Layers 

nur noch die Weights ändern, nicht mehr aber die 

interne Struktur des Layers. 

Klassenmethode – auch Member-Methode

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}



public class NeuralNetwork {
private Layer[] layers;

public NeuralNetwork(Layer[] layers) {
this.layers = layers;

}

public NeuralNetwork() {
this(null);

}

public Layer getOutputs() {
return this.layers[layers.length - 1];

}

public void train() {
// TODO

}
}
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public class Layer {
private Neuron[] neurons;
private double[] weights;

public Layer(Neuron[] neurons, double[] weights) {
this.neurons = neurons;
this.weights = weights;

}

public Layer() {
this(null, null);

}

public double[] getWeights() {
return weights;

}

public void setWeights(double[] weights) {
this.weights = weights;

}

public void changeWeight(int index, double value) {
this.weights[index] = value;

}
}

Layer.java Neuron.java

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) 
{

this.value = value;
}

}

Hier geben wir dem User nur Zugriff auf den Output 

des NNs der Rest geschieht intern.
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public class Layer {
private Neuron[] neurons;
private double[] weights;

public Layer(Neuron[] neurons, double[] weights) {
this.neurons = neurons;
this.weights = weights;

}

public Layer() {
this(null, null);

}

public double[] getWeights() {
return weights;

}

public void setWeights(double[] weights) {
this.weights = weights;

}

public void changeWeight(int index, double value) {
this.weights[index] = value;

}
}

Layer.java Neuron.java

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

public class NeuralNetwork {
private Layer[] layers;

public NeuralNetwork(Layer[] layers) {
this.layers = layers;

}

public NeuralNetwork() {
this(null);

}

public Layer getOutputs() {
return this.layers[layers.length - 1];

}

public void train() {
// TODO

}
}

NeuralNetwork.java



Klassen: Neural Network

73

Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im

nächsten Layer mit Kanten verbinden wollen?

Neuron
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Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im 

nächsten Layer mit Kanten verbinden wollen?

Ein boolean array pro 

Neuron würde reichen. 

1 0 0 0

1

2

3

41 2 3 4
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Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im 

nächsten Layer mit Kanten verbinden wollen?

Ein boolean array pro 

Neuron würde reichen. 

1 0 0 0

1

2

3

41 2 3 4

Vererbung! 
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public class Layer {
private Neuron[] neurons;
private double[] weights;

public Layer(Neuron[] neurons, double[] weights) 
{

this.neurons = neurons;
this.weights = weights;

}

public Layer() {
this(null, null);

}

public double[] getWeights() {
return weights;

}

public void setWeights(double[] weights) {
this.weights = weights;

}

public void changeWeight(int index, double value) 
{

this.weights[index] = value;
}

}

Layer.java

Neuron.java

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

public class SparseNetwork extends NeuralNetwork {

private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

NeuralNetwork.java

public class NeuralNetwork {
private Layer[] layers;

public NeuralNetwork(Layer[] layers) {
this.layers = layers;

}

public NeuralNetwork() {
this(null);

}

public Layer getOutputs() {
return this.layers[layers.length - 1];

}

public void train() {
// TODO

}
}

SparseNetwork.java



private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

77

Connections Array pro Layer. 

In jedem Layer ein Array pro 

Neuron. 



private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

78

Die restlichen Attribute 

werden von NeuralNetwork

geerbt.



private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

79

Konstruktoren werden nie geerbt!



private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

80

Wir rufen den Konstruktor der 

Superklasse und initialisieren das 

Connections-Array zusätzlich.



private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

81

Die train-Methode aus der Superklasse

kennt kein connection Array. Wir

überschreiben diese Methode also.



private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

82

@Override stellt sicher, dass dies wirklich

eine Überschreibung ist. Ansonsten gibt

es einen Fehler bei der Ausführung.



Klassen: Neural Network
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Wir könnten diverse neuronale Netzwerke so durch eine Klasse beschreiben…

Object
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Object Alle Klassen sind Subklassen

von der Klasse Object.
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Object

SparseNetwork ist auch ein NeuralNetwork.
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Object
NeuralNetwork ist kein SparseNetwork.
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Object

Diese zwei Klassen erben beide von 

NeuralNetwork, aber sie sind nicht direkt verwandt.



Teaser: LinkedList vs ArrayList



ArrayList

89

Wir benutzen die ArrayList als ein Array ohne fixe Länge. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen). 

Operation Array ArrayList

Initialisieren mit Typ int = new int[5]; = new ArrayList<Integer>();

Initialisieren mit Typ double = new double[5]; = new ArrayList<Double>();

Initialisieren mit Typ boolean = new boolean[5]; = new ArrayList<Boolean>();



ArrayList
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Wir benutzen die ArrayList als ein Array ohne fixe Länge. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen). 

Operation Array arr ArrayList arrList

Lese Element an Index i arr[i] arrList.get(i)

Element an Index i auf e setzen arr[i] = e; arrList.set(i, e);

Erstes Element arr[0] arrList.getFirst()

Letztes Element arr[arr.length – 1] arrList.getLast()

Länge arr.length arrList.size()



ArrayList
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Wir benutzen die ArrayList als ein Array ohne fixe Länge. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen). 

Operation ArrayList arrList

Füge Element e an Index i hinzu arrList.add(i, e)

Füge Element e am Anfang der Liste hinzu arrList.addFirst(e);

Füge Element e am Ende der Liste hinzu arrList.addLast(e)

Prüfe ob Element e enthalten ist arrList.contains(e)

In Array umwandeln arrList.toArray()
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Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde. 

Sie erlaubt effizientes entfernen / hinzufügen von Elementen und eignet sich deshalb

sehr gut als Queue / Stack.

Operation Array LinkedList

Initialisieren mit Typ int = new int[5]; = new LinkedList<Integer>();

Initialisieren mit Typ double = new double[5]; = new LinkedList<Double>();

Initialisieren mit Typ boolean = new boolean[5]; = new LinkedList<Boolean>();

Ebenfalls funktionieren alle vorherigen Methoden von ArrayList auch für die LinkedList.
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Operation LinkedList list

Liste als Stack (Element entfernen) list.pop()

Liste als Stack (Element e hinzufügen) list.push(e)

Liste als Queue (Element entfernen) list.poll()

Liste als Queue (Element e hinzufügen) list.add(e)

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde. 

Sie erlaubt effizientes entfernen / hinzufügen von Elementen und eignet sich deshalb

sehr gut als Queue / Stack.
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Operation LinkedList list

Liste als Stack (Element entfernen) list.pop()

Liste als Stack (Element e hinzufügen) list.push(e)

Liste als Queue (Element entfernen) list.poll()

Liste als Queue (Element e hinzufügen) list.add(e)

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde. 

Sie erlaubt effizientes entfernen / hinzufügen von Elementen und eignet sich deshalb

sehr gut als Queue / Stack.
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Operation LinkedList list

Liste als Stack (Element entfernen) list.removeFirst()

Liste als Stack (Element e hinzufügen) list.addFirst(e)

Liste als Queue (Element entfernen) list.removeLast()

Liste als Queue (Element e hinzufügen) list.addFirst(e)

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde. 

Sie erlaubt effizientes entfernen / hinzufügen von Elementen und eignet sich deshalb

sehr gut als Queue / Stack.



Listen



LinkedLists
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Referenz auf Objekt des selben Typs!
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Referenz auf Objekt des selben Typs!

Node

• value

• next

Node

• value

• next

Node

• value

• next

null
var
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 

• next =

head
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42 

• next =

head
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head
null
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

head
null
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head
null
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head
null
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head
null
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 

• next =

Node

• value = 42

• next =

head
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

head
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

head
null
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head
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head.next.next = new Node(15); 
was passiert nun?

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head
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head.next.next = new Node(15); 
was passiert nun?

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 15

• next =

head



LinkedLists

117

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head

Schreibzugriff
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head



head.next = head.next.next; 
was passiert nun?
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head

Lesezugriff



head.next = head.next.next; 
was passiert nun?
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class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head
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Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 15

• next =

head.next.next = new Node(15); 
was passiert nun?

head.next = head.next.next; 
was passiert nun?

head



LinkedLists durchlaufen

128

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

Output: 42 -3 17
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Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

current

Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

Output: 42 -3 17
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Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

current

Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

Output: 42 -3 17
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node head = new Node(42); 
head.next = new Node(-3); 
head.next.next = new Node(17); 

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17
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Node

• value

• next

Node

• value

• next

Node

• value

• next

null
var

Node

• value

• next

• prev

null
var

Node

• value

• next

• prev

Node

• value

• next

• prev

single LinkedList

double LinkedList
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Node

• value

• next

Node

• value

• next

Node

• value

• next

null
var

Node

• value

• next

• prev

var

Node

• value

• next

• prevNode

• value

• next

• prev

single LinkedList

cycle LinkedList



LinkedLists – bereits implementiert

▪ Implementation ist eine double linked list

▪ Import mit 

import java.util.LinkedList;

▪ Initialisierung mit 

LinkedList<Type> name = new LinkedList<Type>();

143

„Type” muss ein Referenztyp sein



LinkedLists – bereits implementiert

▪ Implementation ist eine double linked list

▪ Import mit 

import java.util.LinkedList;

▪ Initialisierung mit 

LinkedList<Type> name = new LinkedList<Type>();

144

„Type” muss ein Referenztyp sein

Diesen Typ 

kann man auch 

weglassen
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Methode (LinkedList<String>) Bedeutung

list.addFirst("C");
list.add(1, “B“);
list.add(“A“);

Hinzufügen eines Elements

- am Anfang

- an einer bestimmten Position

- am Ende

list.removeFirst();
list.remove(1);
list.removeLast();

Entfernen eines Elementes

- am Anfang

- an einer bestimmten Position

- am Ende

String element = list.get(0); Lesen eines Elementes an einer 

bestimmten Position

int size = list.size(); Länge der Liste

list.contains("A"); Überprüfen, ob ein Element enthalten ist

list.clear(); Liste leeren

alle Methoden siehe https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/LinkedList.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/LinkedList.html


ArrayLists



ArrayLists
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▪ Implementation via Arrays

▪ Import mit 

import java.util.ArrayList;

▪ Initialisierung mit 

ArrayList<Type> name = new ArrayList<Type>();

„Type” muss ein Referenztyp sein

Diesen Typ 

kann man auch 

weglassen
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Die meisten Methoden sind absolut gleich!

alle Methoden siehe https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html
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alle Methoden siehe https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html

Array ArrayList

Grösse fixe Grösse dynamische Grösse

speichert… primitive Datentypen oder Objekte nur Objekte (unterstützt Wrapper-Klassen)

Deklaration int[] myArray = new int[3]; ArrayList<Integer> myArrayList = new ArrayList<>();

Lesen int x = myArray[0]; myArrayList.get(0);

Schreiben myArray[0] = 3; myArrayList.set(0, 3); // 3 at index 0

Länge myArray.length; // field myArrayList.size(); // method

Element 
hinzufügen

--- myArrayList.add(35); // 35 at the end

myArrayList.add(1, 35); // 35 at index 1

Element 
entfernen

--- myArrayList.remove(1);  // per index or 
myArrayList.remove(e); // per object e

print Arrays.toString(myArray); myArrayList.toString();

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html
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Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren der aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)
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Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren der aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)
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Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)
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Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)
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Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)
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Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)
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Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)
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Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)



LinkedList vs ArrayList

159

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller 

Daten notwendig

O(1), manchmal O(n) durch 

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen 

Position

O(n) O(n) wegen Verschiebung 

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)
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Für die Implementierung von Stacks eignet sich eine _________, da 

Einfügen und Entfernen am Anfang/Ende O(1) sind. 

Für Queues ist eine _________ besser geeignet, da sie effizient Einfügen 

am Ende und Entfernen am Anfang unterstützt, ohne Elemente zu 

verschieben.
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Für die Implementierung von Stacks eignet sich eine LinkedList, da 

Einfügen und Entfernen am Anfang/Ende O(1) sind. 

Für Queues ist eine _________ besser geeignet, da sie effizient Einfügen 

am Ende und Entfernen am Anfang unterstützt, ohne Elemente zu 

verschieben.
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Für die Implementierung von Stacks eignet sich eine LinkedList, da 

Einfügen und Entfernen am Anfang/Ende O(1) sind. 

Für Queues ist eine LinkedList besser geeignet, da sie effizient Einfügen 

am Ende und Entfernen am Anfang unterstützt, ohne Elemente zu 

verschieben.

Operation LinkedList list LinkedList list

Liste als Stack (Element entfernen) list.pop() list.removeFirst()

Liste als Stack (Element e hinzufügen) list.push(e) list.addFirst(e)

Liste als Queue (Element entfernen) list.poll() list.removeFirst()

Liste als Queue (Element e hinzufügen) list.add(e) list.add(e)
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