
252-0027

Einführung in die Programmierung
Übungen

Woche 10: Verlinkte Objekte, Klassen

Timo Stucki
Departement Informatik
ETH Zürich

Organisatorisches

▪ Mein Name: Timo Stucki

▪ Bei Fragen: tistucki@student.ethz.ch

▪ Mails bitte mit «[EProg25]» im Betreff

▪ Neue Aufgaben: Dienstag Abend (im Normalfall)

▪ Abgabe der Übungen bis Dienstag Abend (23:59) Folgewoche

▪ Abgabe immer via Git

▪ Lösungen in separatem Projekt auf Git

2

Probleme Lösen

Probleme Lösen: Executable Graph

6

Probleme Lösen: Executable Graph

7

Probleme Lösen: Executable Graph

8

Probleme Lösen: Executable Graph

9

• ADD Node: Enthalten value a und wir setzen (sum, counter) auf (sum + a, counter + 1).

Kinderknoten werden bei der Ausführung ignoriert.

• SEQ Node: Kinderknoten werden nacheinander ausgeführt. Reihenfolge ist egal.

Das value Attribut wird ignoriert.

• CHOICE Node: Ein beliebiger Knoten wird ausgeführt. Das value Attribut wird ignoriert.

Probleme Lösen: Executable Graph

10

3-2

SEQ

CHOICE

CHOICE

Probleme Lösen: Executable Graph

11

Probleme Lösen: Executable Graph

12

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(1,2)Startzustand:

Probleme Lösen: Executable Graph

13

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ
Wir beginnen hier.

(1,2)Startzustand:

Probleme Lösen: Executable Graph

14

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(1,2)

(1,2) 1

Probleme Lösen: Executable Graph

15

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(1,2)

(1+1,2+1) 1

Probleme Lösen: Executable Graph

16

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(1,2)

(2,3) 1

Probleme Lösen: Executable Graph

17

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

1

Probleme Lösen: Executable Graph

18

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

Probleme Lösen: Executable Graph

19

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

Teilproblem

Probleme Lösen: Executable Graph

20

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

(2,3)

Probleme Lösen: Executable Graph

21

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

(2,3)

Teilproblem

Probleme Lösen: Executable Graph

22

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

(2,3)

CHOICE

SEQ

4 3

SEQ

(2,3)

Probleme Lösen: Executable Graph

23

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

(2,3)

CHOICE

SEQ

4 3

SEQ

(2,3)

Probleme Lösen: Executable Graph

24

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

(2,3)

CHOICE

SEQ

4 3

SEQ

(6,4)

Probleme Lösen: Executable Graph

25

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

(2,3)

CHOICE

SEQ

4 3

SEQ

(6,4)

Probleme Lösen: Executable Graph

26

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

(2,3)

CHOICE

SEQ

4 3

SEQ

(9,5)

Probleme Lösen: Executable Graph

27

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

SEQ

(9,5)

Probleme Lösen: Executable Graph

28

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

SEQ

(9,5)

Probleme Lösen: Executable Graph

29

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(2,3)

CHOICE

SEQ

-2

4 3

SEQ

SEQ

(7,6)

Probleme Lösen: Executable Graph

30

1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

SEQ

(7,6)

Probleme Lösen: Executable Graph

31

SEQ1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(7,6)

Probleme Lösen: Executable Graph

32

SEQ1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(7,6)

Probleme Lösen: Executable Graph

33

SEQ1
CHOICE

SEQ

-2

5

4 3

SEQ

SEQ

(12,7)

Probleme Lösen: Executable Graph

34

Probleme Lösen: Executable Graph

35

1
CHOICE

-2

5

4 3

SEQ

SEQ

(0,0)Startzustand:

CHOICE

Probleme Lösen: Executable Graph

36

1
CHOICE

-2

5

4 3

SEQ

SEQ

(0,0)Startzustand:

CHOICE

Probleme Lösen: Executable Graph

37

1
CHOICE

-2

5

4 3

SEQ

SEQ

(1,1)Startzustand:

CHOICE

Probleme Lösen: Executable Graph

38

1
CHOICE

-2

5

4 3

SEQ

SEQ

(1,1)Startzustand:

CHOICE

Probleme Lösen: Executable Graph

39

1
CHOICE

-2

5

4 3

SEQ

SEQ

(1,1)Startzustand:

CHOICE

Wir haben jetzt die

Wahl zwischen

zwei Kinderknoten.

Probleme Lösen: Executable Graph

40

1
CHOICE

5

4 3

SEQ

SEQ

(1,1)

CHOICE 1
CHOICE

-2

5

SQ

SEQ

(1,1)

CHOICE

Resultat 1 Resultat 2

Probleme Lösen: Executable Graph

41

1
CHOICE

5

4 3

SEQ

SEQ

(1,1)

CHOICE 1
CHOICE

-2

5

SEQ

(1,1)

CHOICE

Resultat 1 Resultat 2

Probleme Lösen: Executable Graph

42

1
CHOICE

5

4 3

SEQ

SEQ

(5,2)

CHOICE 1
CHOICE

-2

5

SEQ

(1,1)

CHOICE

Resultat 1 Resultat 2

Probleme Lösen: Executable Graph

43

1
CHOICE

5

4 3

SEQ

SEQ

(5,2)

CHOICE 1
CHOICE

-2

5

SEQ

(1,1)

CHOICE

Resultat 1 Resultat 2

Probleme Lösen: Executable Graph

44

1
CHOICE

5

4 3

SEQ

SEQ

(8,3)

CHOICE 1
CHOICE

-2

5

SEQ

(1,1)

CHOICE

Resultat 1 Resultat 2

Probleme Lösen: Executable Graph

45

1
CHOICE

5

4 3

SEQ

SEQ

(8,3)

CHOICE 1
CHOICE

-2

5

SEQ

(1,1)

CHOICE

Resultat 1 Resultat 2

Probleme Lösen: Executable Graph

46

1
CHOICE

5

4 3

SEQ

SEQ

(8,3)

CHOICE 1
CHOICE

-2

5

SEQ

(-1,2)

CHOICE

Resultat 1 Resultat 2

Probleme Lösen: Executable Graph

47

1
CHOICE

5

4 3

SEQ

SEQ

(8,3)

CHOICE 1
CHOICE

-2

5

SEQ

(-1,2)

CHOICE

Resultat 1 Resultat 2

Probleme Lösen: Executable Graph

48

1
CHOICE

5

4 3

SEQ

SEQ

(8,3)

CHOICE 1
CHOICE

-2

5

SEQ

(-1,2)

CHOICE

Resultat 1 Resultat 2

Wir speichern alle

möglichen Lösungen

in einer Liste.

{(8,3),(-1,2)}

Probleme Lösen: Executable Graph

49

1
CHOICE

5

4 3

SEQ

SEQ

{(8,3),(-1,2)}

CHOICE

-2

Lösungen:

Probleme Lösen: Executable Graph

50

1
CHOICE

5

4 3

SEQ

SEQ

{(8,3),(-1,2)}

CHOICE

-2

Lösungen:
Wir müssen jedes

Zwischenresultat in

der Liste updaten.

Probleme Lösen: Executable Graph

51

1
CHOICE

5

4 3

SEQ

SEQ

{(8+5,3+1),(-1+5,2+1)}

CHOICE

-2

Lösungen:

Probleme Lösen: Executable Graph

52

1
CHOICE

5

4 3

SEQ

SEQ

{(13,4),(4,3)}

CHOICE

-2

Lösungen:

Wie lösen wir das Problem?

• Wir nutzen eine Helfermethode allResultsGo welche statt nur einem Programmstate eine

Liste von Programmstates als Parameter hat.

• ADD: Für alle Zwischenresultate addiere value dazu, erhöhe den Counter um 1 und füge das

Resultat zu next hinzu.

• SEQ: Rufe für alle Kinderknoten die Methode allResultsGo auf. Wir speichern die

zurückgegebene Liste und nutzen diese als Parameter für den nächsten Kinderknoten.

• CHOICE: Rufe für alle Kinderknoten die Methode allResultsGo auf. Wir berechnen die

Resultate für jeden Kinderknoten separat und fügen die Listen zusammen.

53

public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

if (n.getType().equals("ADD")) {

LinkedProgramStateList next = new LinkedProgramStateList();

for (int i = 0; i < states.size; i += 1) {

ProgramState state = states.get(i);

next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));

}

return next;

}

(…)

}

54

Neue Liste wird

erstellt, da wir nicht

states ändern wollen.

public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

if (n.getType().equals("ADD")) {

LinkedProgramStateList next = new LinkedProgramStateList();

for (int i = 0; i < states.size; i += 1) {

ProgramState state = states.get(i);

next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));

}

return next;

}

(…)

}

55

Für jedes Zwischenresult in der Liste states wird value zur Summe

hinzugefügt und der Counter erhöht.

public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

if (n.getType().equals("ADD")) {

LinkedProgramStateList next = new LinkedProgramStateList();

for (int i = 0; i < states.size; i += 1) {

ProgramState state = states.get(i);

next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));

}

return next;

}

(…)

}

56

Für jedes Zwischenresult in der Liste states wird value zur Summe

hinzugefügt und der Counter erhöht.

public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

(…)

} else if (n.getType().equals("SEQ")) {

LinkedProgramStateList next = states;

for (Node ch : n.getSubnodes()) { //Recursively update the results

next = allResultsGo(ch, next);

}

return next;

}

(…)

}

57

Wir verändern die Liste auf welche states verweist

nicht, weil wir bei ADD notes eine neue Liste

erstellen. Hier wird aber keine Kopie erstellt!

public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

(…)

} else if (n.getType().equals("SEQ")) {

LinkedProgramStateList next = states;

for (Node ch : n.getSubnodes()) {

next = allResultsGo(ch, next);

}

return next;

}

(…)

}

58

Wir rufen für jeden

Kinderknoten die

Methode rekursiv auf.

public static LinkedProgramStateList allResultsGo(Node n, LinkedProgramStateList states) {

(…)

} else if (n.getType().equals("CHOICE")) {

LinkedProgramStateList next = new LinkedProgramStateList();

for (Node ch : n.getSubnodes()) {

LinkedProgramStateList results = allResultsGo(ch, states);

for (int i = 0; i < results.size; i += 1) {

next.addLast(results.get(i));

}

}

return next;

}

return null;

}

59

Für jeden Kinderknoten wird eine

Liste zurückgegeben und wir

fügen diese dann zusammen.

Klassen: Neural Network

61

Klassen: Neural Network

62

Ziel: AI in Java. Dafür brauchen wir Neuronale Netwerke (NNs)

• Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk

modelliert.

Neuron

Klassen: Neural Network

63

Ziel: AI in Java. Dafür brauchen wir Neuronale Netwerke (NNs)

• Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk

modelliert.

Ein “Layer”

von einem

NN.

Klassen: Neural Network

64

Ziel: AI in Java. Dafür brauchen wir Neuronale Netwerke (NNs)

• Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk

modelliert.

Zwei Layers l1
und l2 welche

durch Kanten

verbunden sind,

welche jeweils ein

Gewicht besitzen.

l1

l2

Klassen: Neural Network

65

Ziel: AI in Java. Dafür brauchen wir Neuronale Netwerke (NNs)

• Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk

modelliert.

Das NN

Klassen: Neural Network

66

Das Neural Netzwerk ist aber nicht nur eine Ansammlung an Layers, Weights und

Neuronen (was einen Typ definiert). Es besitzt zusätzlich ein Verhalten, welches durch

Methoden der Klasse definiert wird.

Das NN

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

67

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

6868

Attribut – private access modifier

Klasse (gespeichert in Neuron.java) – public access modifier

Wir wollen, dass jeder die Klasse nutzen kann,

aber der Zugriff auf die Attribute nur durch

Methoden der Klasse erlaubt ist.

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

6969

Konstruktoren

Getter und Setter Methoden

public class Layer {
private Neuron[] neurons;
private double[] weights;

public Layer(Neuron[] neurons, double[] weights) {
this.neurons = neurons;
this.weights = weights;

}

public Layer() {
this(null, null);

}

public double[] getWeights() {
return weights;

}

public void setWeights(double[] weights) {
this.weights = weights;

}

public void changeWeight(int index, double value) {
this.weights[index] = value;

}
}

70

Ein Benutzer kann nach dem Erstellen eines Layers

nur noch die Weights ändern, nicht mehr aber die

interne Struktur des Layers.

Klassenmethode – auch Member-Methode

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

public class NeuralNetwork {
private Layer[] layers;

public NeuralNetwork(Layer[] layers) {
this.layers = layers;

}

public NeuralNetwork() {
this(null);

}

public Layer getOutputs() {
return this.layers[layers.length - 1];

}

public void train() {
// TODO

}
}

71

public class Layer {
private Neuron[] neurons;
private double[] weights;

public Layer(Neuron[] neurons, double[] weights) {
this.neurons = neurons;
this.weights = weights;

}

public Layer() {
this(null, null);

}

public double[] getWeights() {
return weights;

}

public void setWeights(double[] weights) {
this.weights = weights;

}

public void changeWeight(int index, double value) {
this.weights[index] = value;

}
}

Layer.java Neuron.java

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value)
{

this.value = value;
}

}

Hier geben wir dem User nur Zugriff auf den Output

des NNs der Rest geschieht intern.

72

public class Layer {
private Neuron[] neurons;
private double[] weights;

public Layer(Neuron[] neurons, double[] weights) {
this.neurons = neurons;
this.weights = weights;

}

public Layer() {
this(null, null);

}

public double[] getWeights() {
return weights;

}

public void setWeights(double[] weights) {
this.weights = weights;

}

public void changeWeight(int index, double value) {
this.weights[index] = value;

}
}

Layer.java Neuron.java

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

public class NeuralNetwork {
private Layer[] layers;

public NeuralNetwork(Layer[] layers) {
this.layers = layers;

}

public NeuralNetwork() {
this(null);

}

public Layer getOutputs() {
return this.layers[layers.length - 1];

}

public void train() {
// TODO

}
}

NeuralNetwork.java

Klassen: Neural Network

73

Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im

nächsten Layer mit Kanten verbinden wollen?

Neuron

Klassen: Neural Network

74

Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im

nächsten Layer mit Kanten verbinden wollen?

Ein boolean array pro

Neuron würde reichen.

1 0 0 0

1

2

3

41 2 3 4

Klassen: Neural Network

75

Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im

nächsten Layer mit Kanten verbinden wollen?

Ein boolean array pro

Neuron würde reichen.

1 0 0 0

1

2

3

41 2 3 4

Vererbung!

76

public class Layer {
private Neuron[] neurons;
private double[] weights;

public Layer(Neuron[] neurons, double[] weights)
{

this.neurons = neurons;
this.weights = weights;

}

public Layer() {
this(null, null);

}

public double[] getWeights() {
return weights;

}

public void setWeights(double[] weights) {
this.weights = weights;

}

public void changeWeight(int index, double value)
{

this.weights[index] = value;
}

}

Layer.java

Neuron.java

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(0);

}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}
}

public class SparseNetwork extends NeuralNetwork {

private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

NeuralNetwork.java

public class NeuralNetwork {
private Layer[] layers;

public NeuralNetwork(Layer[] layers) {
this.layers = layers;

}

public NeuralNetwork() {
this(null);

}

public Layer getOutputs() {
return this.layers[layers.length - 1];

}

public void train() {
// TODO

}
}

SparseNetwork.java

private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

77

Connections Array pro Layer.

In jedem Layer ein Array pro

Neuron.

private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

78

Die restlichen Attribute

werden von NeuralNetwork

geerbt.

private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

79

Konstruktoren werden nie geerbt!

private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

80

Wir rufen den Konstruktor der

Superklasse und initialisieren das

Connections-Array zusätzlich.

private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

81

Die train-Methode aus der Superklasse

kennt kein connection Array. Wir

überschreiben diese Methode also.

private static class SparseNetwork extends NeuralNetwork {
private boolean[][] connections;

public SparseNetwork(Layer[] layers, boolean[][] connections) {
super(layers);
this.connections = connections;

}

public SparseNetwork() {
SparseNetwork(null, null);

}

@Override
public void train() {

// TODO
}

}

82

@Override stellt sicher, dass dies wirklich

eine Überschreibung ist. Ansonsten gibt

es einen Fehler bei der Ausführung.

Klassen: Neural Network

83

Wir könnten diverse neuronale Netzwerke so durch eine Klasse beschreiben…

Object

84

Object Alle Klassen sind Subklassen

von der Klasse Object.

85

Object

SparseNetwork ist auch ein NeuralNetwork.

86

Object
NeuralNetwork ist kein SparseNetwork.

87

Object

Diese zwei Klassen erben beide von

NeuralNetwork, aber sie sind nicht direkt verwandt.

Teaser: LinkedList vs ArrayList

ArrayList

89

Wir benutzen die ArrayList als ein Array ohne fixe Länge. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen).

Operation Array ArrayList

Initialisieren mit Typ int = new int[5]; = new ArrayList<Integer>();

Initialisieren mit Typ double = new double[5]; = new ArrayList<Double>();

Initialisieren mit Typ boolean = new boolean[5]; = new ArrayList<Boolean>();

ArrayList

90

Wir benutzen die ArrayList als ein Array ohne fixe Länge. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen).

Operation Array arr ArrayList arrList

Lese Element an Index i arr[i] arrList.get(i)

Element an Index i auf e setzen arr[i] = e; arrList.set(i, e);

Erstes Element arr[0] arrList.getFirst()

Letztes Element arr[arr.length – 1] arrList.getLast()

Länge arr.length arrList.size()

ArrayList

91

Wir benutzen die ArrayList als ein Array ohne fixe Länge. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen).

Operation ArrayList arrList

Füge Element e an Index i hinzu arrList.add(i, e)

Füge Element e am Anfang der Liste hinzu arrList.addFirst(e);

Füge Element e am Ende der Liste hinzu arrList.addLast(e)

Prüfe ob Element e enthalten ist arrList.contains(e)

In Array umwandeln arrList.toArray()

LinkedList

92

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde.

Sie erlaubt effizientes entfernen / hinzufügen von Elementen und eignet sich deshalb

sehr gut als Queue / Stack.

Operation Array LinkedList

Initialisieren mit Typ int = new int[5]; = new LinkedList<Integer>();

Initialisieren mit Typ double = new double[5]; = new LinkedList<Double>();

Initialisieren mit Typ boolean = new boolean[5]; = new LinkedList<Boolean>();

Ebenfalls funktionieren alle vorherigen Methoden von ArrayList auch für die LinkedList.

LinkedList

93

Operation LinkedList list

Liste als Stack (Element entfernen) list.pop()

Liste als Stack (Element e hinzufügen) list.push(e)

Liste als Queue (Element entfernen) list.poll()

Liste als Queue (Element e hinzufügen) list.add(e)

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde.

Sie erlaubt effizientes entfernen / hinzufügen von Elementen und eignet sich deshalb

sehr gut als Queue / Stack.

LinkedList

94

Operation LinkedList list

Liste als Stack (Element entfernen) list.pop()

Liste als Stack (Element e hinzufügen) list.push(e)

Liste als Queue (Element entfernen) list.poll()

Liste als Queue (Element e hinzufügen) list.add(e)

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde.

Sie erlaubt effizientes entfernen / hinzufügen von Elementen und eignet sich deshalb

sehr gut als Queue / Stack.

LinkedList

95

Operation LinkedList list

Liste als Stack (Element entfernen) list.removeFirst()

Liste als Stack (Element e hinzufügen) list.addFirst(e)

Liste als Queue (Element entfernen) list.removeLast()

Liste als Queue (Element e hinzufügen) list.addFirst(e)

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde.

Sie erlaubt effizientes entfernen / hinzufügen von Elementen und eignet sich deshalb

sehr gut als Queue / Stack.

Listen

LinkedLists

LinkedLists

99

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

LinkedLists

100

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Referenz auf Objekt des selben Typs!

LinkedLists

101

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Referenz auf Objekt des selben Typs!

Node

• value

• next

Node

• value

• next

Node

• value

• next

null
var

LinkedLists

102

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

LinkedLists

103

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value =

• next =

head

LinkedLists

104

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head

LinkedLists

105

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head
null

LinkedLists

106

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

head
null

LinkedLists

107

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head
null

LinkedLists

108

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head
null

LinkedLists

109

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 42

• next =

head
null

LinkedLists

110

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value =

• next =

Node

• value = 42

• next =

head

LinkedLists

111

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

head

LinkedLists

112

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

head
null

LinkedLists

113

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

LinkedLists

114

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);
Beispiel

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

LinkedLists

115

head.next.next = new Node(15);
was passiert nun?

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

LinkedLists

116

head.next.next = new Node(15);
was passiert nun?

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 15

• next =

head

LinkedLists

117

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

LinkedLists

118

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

LinkedLists

119

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

LinkedLists

120

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

Schreibzugriff

LinkedLists

121

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

LinkedLists

122

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

head.next = head.next.next;
was passiert nun?

LinkedLists

123

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head

LinkedLists

124

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

LinkedLists

125

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

Lesezugriff

head.next = head.next.next;
was passiert nun?

LinkedLists

126

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head

LinkedLists

127

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}
single linked list Knotenaufbau

Node

• value = 15

• next =

head.next.next = new Node(15);
was passiert nun?

head.next = head.next.next;
was passiert nun?

head

LinkedLists durchlaufen

128

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

Output: 42 -3 17

LinkedLists durchlaufen

129

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

current

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

Output: 42 -3 17

LinkedLists durchlaufen

130

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

current

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

Output: 42 -3 17

LinkedLists durchlaufen

131

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

132

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

133

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

134

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

135

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

136

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

137

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

138

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

139

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

LinkedLists durchlaufen

140

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

}
}

Node

• value = -3

• next =

Node

• value = 42

• next =

Node

• value = 17

• next =

null
head

Node current = head;
while (current != null) {

System.out.println(current.value);
current = current.next;

}

current

Output: 42 -3 17

Verschiede Typen von LinkedLists

141

Node

• value

• next

Node

• value

• next

Node

• value

• next

null
var

Node

• value

• next

• prev

null
var

Node

• value

• next

• prev

Node

• value

• next

• prev

single LinkedList

double LinkedList

Verschiede Typen von LinkedLists

142

Node

• value

• next

Node

• value

• next

Node

• value

• next

null
var

Node

• value

• next

• prev

var

Node

• value

• next

• prevNode

• value

• next

• prev

single LinkedList

cycle LinkedList

LinkedLists – bereits implementiert

▪ Implementation ist eine double linked list

▪ Import mit

import java.util.LinkedList;

▪ Initialisierung mit

LinkedList<Type> name = new LinkedList<Type>();

143

„Type” muss ein Referenztyp sein

LinkedLists – bereits implementiert

▪ Implementation ist eine double linked list

▪ Import mit

import java.util.LinkedList;

▪ Initialisierung mit

LinkedList<Type> name = new LinkedList<Type>();

144

„Type” muss ein Referenztyp sein

Diesen Typ

kann man auch

weglassen

LinkedLists – Methoden

145

Methode (LinkedList<String>) Bedeutung

list.addFirst("C");
list.add(1, “B“);
list.add(“A“);

Hinzufügen eines Elements

- am Anfang

- an einer bestimmten Position

- am Ende

list.removeFirst();
list.remove(1);
list.removeLast();

Entfernen eines Elementes

- am Anfang

- an einer bestimmten Position

- am Ende

String element = list.get(0); Lesen eines Elementes an einer

bestimmten Position

int size = list.size(); Länge der Liste

list.contains("A"); Überprüfen, ob ein Element enthalten ist

list.clear(); Liste leeren

alle Methoden siehe https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/LinkedList.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/LinkedList.html

ArrayLists

ArrayLists

147

▪ Implementation via Arrays

▪ Import mit

import java.util.ArrayList;

▪ Initialisierung mit

ArrayList<Type> name = new ArrayList<Type>();

„Type” muss ein Referenztyp sein

Diesen Typ

kann man auch

weglassen

ArrayLists – Methoden

148

Die meisten Methoden sind absolut gleich!

alle Methoden siehe https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html

ArrayLists – Methoden

149

alle Methoden siehe https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html

Array ArrayList

Grösse fixe Grösse dynamische Grösse

speichert… primitive Datentypen oder Objekte nur Objekte (unterstützt Wrapper-Klassen)

Deklaration int[] myArray = new int[3]; ArrayList<Integer> myArrayList = new ArrayList<>();

Lesen int x = myArray[0]; myArrayList.get(0);

Schreiben myArray[0] = 3; myArrayList.set(0, 3); // 3 at index 0

Länge myArray.length; // field myArrayList.size(); // method

Element
hinzufügen

--- myArrayList.add(35); // 35 at the end

myArrayList.add(1, 35); // 35 at index 1

Element
entfernen

--- myArrayList.remove(1); // per index or
myArrayList.remove(e); // per object e

print Arrays.toString(myArray); myArrayList.toString();

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html

LinkedList vs ArrayList

LinkedList vs ArrayList

151

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren der aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

152

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren der aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

153

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

154

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

155

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

156

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

157

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

158

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

159

Eigenschaft LinkedList ArrayList

Im Speicher Doppelt verkettete Liste Array

Hinzufügen eines Elements O(n), aber nie Kopieren aller

Daten notwendig

O(1), manchmal O(n) durch

Kopieren aller Daten

Zugriffszeit O(n) O(1)

Einfügen an einer beliebigen

Position

O(n) O(n) wegen Verschiebung

der Elemente

Einfügen am Anfang O(1) O(n)

Löschen am Anfang O(1) O(n)

Einfügen am Ende O(1) O(1), falls Array gross genug

Löschen am Ende O(1) O(1)

LinkedList vs ArrayList

160

Für die Implementierung von Stacks eignet sich eine _________, da

Einfügen und Entfernen am Anfang/Ende O(1) sind.

Für Queues ist eine _________ besser geeignet, da sie effizient Einfügen

am Ende und Entfernen am Anfang unterstützt, ohne Elemente zu

verschieben.

LinkedList vs ArrayList

161

Für die Implementierung von Stacks eignet sich eine LinkedList, da

Einfügen und Entfernen am Anfang/Ende O(1) sind.

Für Queues ist eine _________ besser geeignet, da sie effizient Einfügen

am Ende und Entfernen am Anfang unterstützt, ohne Elemente zu

verschieben.

LinkedList vs ArrayList

162

Für die Implementierung von Stacks eignet sich eine LinkedList, da

Einfügen und Entfernen am Anfang/Ende O(1) sind.

Für Queues ist eine LinkedList besser geeignet, da sie effizient Einfügen

am Ende und Entfernen am Anfang unterstützt, ohne Elemente zu

verschieben.

Operation LinkedList list LinkedList list

Liste als Stack (Element entfernen) list.pop() list.removeFirst()

Liste als Stack (Element e hinzufügen) list.push(e) list.addFirst(e)

Liste als Queue (Element entfernen) list.poll() list.removeFirst()

Liste als Queue (Element e hinzufügen) list.add(e) list.add(e)

Vorbesprechung

Aufgabe 1:
Square

Grid

Aufgabe 1:
Square

Grid

Referenzen vs Objekte

Aufgabe 2:
Umkehrung

Aufgabe 3:
“KI” für

das
Ratespiel

Aufgabe 4:
Klassenrätsel

Nachbesprechung

Aufgabe 1:
Loop-

Invariante

Aufgabe 2:
Linked

List

Aufgabe 2:
Linked

List

Aufgabe 3:
Executable

Graph

Aufgabe 4:
Energiespiel

Aufgabe 5:
Timed
Bonus

	Standardabschnitt
	Slide 1
	Slide 2: Organisatorisches
	Slide 3
	Slide 4

	Probleme lösen
	Slide 5: Probleme Lösen
	Slide 6: Probleme Lösen: Executable Graph
	Slide 7: Probleme Lösen: Executable Graph
	Slide 8: Probleme Lösen: Executable Graph
	Slide 9: Probleme Lösen: Executable Graph
	Slide 10: Probleme Lösen: Executable Graph
	Slide 11: Probleme Lösen: Executable Graph
	Slide 12: Probleme Lösen: Executable Graph
	Slide 13: Probleme Lösen: Executable Graph
	Slide 14: Probleme Lösen: Executable Graph
	Slide 15: Probleme Lösen: Executable Graph
	Slide 16: Probleme Lösen: Executable Graph
	Slide 17: Probleme Lösen: Executable Graph
	Slide 18: Probleme Lösen: Executable Graph
	Slide 19: Probleme Lösen: Executable Graph
	Slide 20: Probleme Lösen: Executable Graph
	Slide 21: Probleme Lösen: Executable Graph
	Slide 22: Probleme Lösen: Executable Graph
	Slide 23: Probleme Lösen: Executable Graph
	Slide 24: Probleme Lösen: Executable Graph
	Slide 25: Probleme Lösen: Executable Graph
	Slide 26: Probleme Lösen: Executable Graph
	Slide 27: Probleme Lösen: Executable Graph
	Slide 28: Probleme Lösen: Executable Graph
	Slide 29: Probleme Lösen: Executable Graph
	Slide 30: Probleme Lösen: Executable Graph
	Slide 31: Probleme Lösen: Executable Graph
	Slide 32: Probleme Lösen: Executable Graph
	Slide 33: Probleme Lösen: Executable Graph
	Slide 34: Probleme Lösen: Executable Graph
	Slide 35: Probleme Lösen: Executable Graph
	Slide 36: Probleme Lösen: Executable Graph
	Slide 37: Probleme Lösen: Executable Graph
	Slide 38: Probleme Lösen: Executable Graph
	Slide 39: Probleme Lösen: Executable Graph
	Slide 40: Probleme Lösen: Executable Graph
	Slide 41: Probleme Lösen: Executable Graph
	Slide 42: Probleme Lösen: Executable Graph
	Slide 43: Probleme Lösen: Executable Graph
	Slide 44: Probleme Lösen: Executable Graph
	Slide 45: Probleme Lösen: Executable Graph
	Slide 46: Probleme Lösen: Executable Graph
	Slide 47: Probleme Lösen: Executable Graph
	Slide 48: Probleme Lösen: Executable Graph
	Slide 49: Probleme Lösen: Executable Graph
	Slide 50: Probleme Lösen: Executable Graph
	Slide 51: Probleme Lösen: Executable Graph
	Slide 52: Probleme Lösen: Executable Graph
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

	Klassen: Neuronale Netzwerke
	Slide 61: Klassen: Neural Network
	Slide 62: Klassen: Neural Network
	Slide 63: Klassen: Neural Network
	Slide 64: Klassen: Neural Network
	Slide 65: Klassen: Neural Network
	Slide 66: Klassen: Neural Network
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Klassen: Neural Network
	Slide 74: Klassen: Neural Network
	Slide 75: Klassen: Neural Network
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Klassen: Neural Network
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: Teaser: LinkedList vs ArrayList
	Slide 89: ArrayList
	Slide 90: ArrayList
	Slide 91: ArrayList
	Slide 92: LinkedList
	Slide 93: LinkedList
	Slide 94: LinkedList
	Slide 95: LinkedList

	Listen
	Slide 97: Listen
	Slide 98: LinkedLists
	Slide 99: LinkedLists
	Slide 100: LinkedLists
	Slide 101: LinkedLists
	Slide 102: LinkedLists
	Slide 103: LinkedLists
	Slide 104: LinkedLists
	Slide 105: LinkedLists
	Slide 106: LinkedLists
	Slide 107: LinkedLists
	Slide 108: LinkedLists
	Slide 109: LinkedLists
	Slide 110: LinkedLists
	Slide 111: LinkedLists
	Slide 112: LinkedLists
	Slide 113: LinkedLists
	Slide 114: LinkedLists
	Slide 115: LinkedLists
	Slide 116: LinkedLists
	Slide 117: LinkedLists
	Slide 118: LinkedLists
	Slide 119: LinkedLists
	Slide 120: LinkedLists
	Slide 121: LinkedLists
	Slide 122: LinkedLists
	Slide 123: LinkedLists
	Slide 124: LinkedLists
	Slide 125: LinkedLists
	Slide 126: LinkedLists
	Slide 127: LinkedLists
	Slide 128: LinkedLists durchlaufen
	Slide 129: LinkedLists durchlaufen
	Slide 130: LinkedLists durchlaufen
	Slide 131: LinkedLists durchlaufen
	Slide 132: LinkedLists durchlaufen
	Slide 133: LinkedLists durchlaufen
	Slide 134: LinkedLists durchlaufen
	Slide 135: LinkedLists durchlaufen
	Slide 136: LinkedLists durchlaufen
	Slide 137: LinkedLists durchlaufen
	Slide 138: LinkedLists durchlaufen
	Slide 139: LinkedLists durchlaufen
	Slide 140: LinkedLists durchlaufen
	Slide 141: Verschiede Typen von LinkedLists
	Slide 142: Verschiede Typen von LinkedLists
	Slide 143: LinkedLists – bereits implementiert
	Slide 144: LinkedLists – bereits implementiert
	Slide 145: LinkedLists – Methoden
	Slide 146: ArrayLists
	Slide 147: ArrayLists
	Slide 148: ArrayLists – Methoden
	Slide 149: ArrayLists – Methoden
	Slide 150: LinkedList vs ArrayList
	Slide 151: LinkedList vs ArrayList
	Slide 152: LinkedList vs ArrayList
	Slide 153: LinkedList vs ArrayList
	Slide 154: LinkedList vs ArrayList
	Slide 155: LinkedList vs ArrayList
	Slide 156: LinkedList vs ArrayList
	Slide 157: LinkedList vs ArrayList
	Slide 158: LinkedList vs ArrayList
	Slide 159: LinkedList vs ArrayList
	Slide 160: LinkedList vs ArrayList
	Slide 161: LinkedList vs ArrayList
	Slide 162: LinkedList vs ArrayList

	Vor- und Nachbesprechung
	Slide 163: Vorbesprechung
	Slide 164: Aufgabe 1: Square Grid
	Slide 165: Aufgabe 1: Square Grid
	Slide 166: Aufgabe 2: Umkehrung
	Slide 167: Aufgabe 3: “KI” für das Ratespiel
	Slide 168: Aufgabe 4: Klassenrätsel
	Slide 169: Nachbesprechung
	Slide 170: Aufgabe 1: Loop-Invariante
	Slide 171: Aufgabe 2: Linked List
	Slide 172: Aufgabe 2: Linked List
	Slide 173: Aufgabe 3: Executable Graph
	Slide 174: Aufgabe 4: Energiespiel
	Slide 175: Aufgabe 5: Timed Bonus

