252-0027

Einflihrung in die Programmierung
Ubungen

Woche 10: Verlinkte Objekte, Klassen

Timo Stucki
Departement Informatik
ETH Ziirich

Organisatorisches

= Mein Name: Timo Stucki
= Bei Fragen: tistucki@student.ethz.ch
Mails bitte mit «[EProg25]» im Betreff
= Neue Aufgaben: Dienstag Abend (im Normalfall)
= Abgabe der Ubungen bis Dienstag Abend (23:59) Folgewoche

= Abgabe immer via Git

Losungen in separatem Projekt auf Git

Discord: timostucki

Webseite

&]:
I
[=]

= timostucki.com

Probleme LOsen

Probleme Losen: Executable Graph

Probleme Losen: Executable Graph

In dieser Aufgabe verwenden wir gerichtete azyklische Graphen, um Programme zu représentieren.
Der Programmzustand ist dabei immer durch ein Tupel (suni, counter) gegeben, wobei sum und
counter ganze Zahlen sind. Programmzustinde werden durch ProgramState-Objekte modelliert,
wobei ProgramState.getSum() (bzw. ProgramState.getCounter()) dem ersten Element (bzw.
dem zweiten Element) des Tupels entspricht.

Eine Ausfiihrung des Programms manipuliert den Programmzustand. Das Resultat eines
Programms ist gegeben durch den erreichten Programmzustand, nachdem alle Operationen im
Programm ausgefiihrt wurden. Programme koénnen nichtdeterministisch sein: Das heisst, fiir ein
einzelnes Programm kann es fiir den gleichen Startzustand mehrere Programmausfiihrungen
geben, welche zu unterschiedlichen Resultaten fiihren.

Knoten in Graphen werden durch Node-Objekte modelliert. Node.getSubnodes () gibt die
Kinderknoten als ein Array zuriick (m ist genau dann ein Kinderknoten von n, wenn es eine
ausgehende gerichtete Kante von n zu m gibt). Wir unterscheiden drei Arten von Knoten, wobei
die Methode Node.getType () die Knotenart als String zuriickgibt. Um ein Programm, welches
durch den Knoten n reprasentiert wird, auszufiihren, muss man den “Knoten n ausfiithren”. Wir
beschreiben nun die drei Knotenarten und jeweils die Ausfiithrung der Knoten:

Probleme Losen: Executable Graph

1. Additionsknoten (Node.getType O ist “ADD”): Solche Knoten besitzen einen Additionswert
a gegeben durch Node.getValue () (eine ganze Zahl) und bei der Ausfiihrung dieses Knotens
wird der I’rogrammzustand von (sum,counter) zu (sum + a,counter + 1) aktualisiert. Die
Kinderknoten von solchen Knoten werden bei der Ausfiihrung ignoriert.

2. Sequenzknoten (Node.getType () ist “SEQ”): Bei der Ausfiithrung eines Sequenzknoten n
werden die Kinderknoten von n nacheinander ausgefiihrt. Die Reihenfolge in welcher die
Kinderknoten ausgefiihrt werden spielt keine Rolle, da der erreichte Programmzustand fiir
jede Reihenfolge gleich ist. Node.getValue () ist irrelevant.

3. Auswahlknoten (Node.getType () ist “CHOICLE”): Bei der Ausfithrung eines Auswahlknoten
n wird ein beliebiger Kinderknoten von n ausgewdhlt und ausgefiihrt. Node . getValue () ist
irrelevant. Diese Knoten fiihren zu Nichtdeterminismus.

Sie diirfen davon ausgehen, dass Sequenz- und Auswahlknoten immer mindestens einen
Kinderknoten haben, und dass es zwischen zwei Knoten immer hochstens einen Pfad gibt. Die
folgende Abbildung zeigt zwei Beispielgraphen, wobei Knoten mit der Beschriftung “SEQ” (bzw.
“CHOICE") Sequenzknoten (bzw. Auswahlknoten) entsprechen und die Zahlen in Additionsknoten
den Additionswerten entsprechen.

Probleme Losen: Executable Graph

Implementieren Sie GraphExecution.allResults(Node n, ProgramState initState), wel-
che fiir den Startzustand initState alle moglichen Resultate fiir das Programm reprasentiert
durch n zurtickgibt. Die Resultate sollten als eine Liste von ProgramState-Objekten zuriickge-
geben werden (repréasentiert durch die Klasse LinkedProgramStateList). Die Reihenfolge der
zuriickgegeben Liste spielt keine Rolle. Wenn das gleiche Resultat durch genau k verschiedene
Austithrungen generiert werden kann, dann muss das Resultat k Mal in der zuriickgegeben Liste
vorkommen. Zwei Ausfiihrungen sind unterschiedlich, wenn es mindestens einen Knoten gibt,
der in einer aber nicht in der anderen Ausfiihrung ausgefiihrt wird.

Wir stellen zwei Testdateien zur Verfliigung. “GraphExecutionTest.java” enthalt Tests, welche
wir an einer Priifung geben wiirden. “GradingGraphExecutionTest.java” enthilt Tests, welche wir
zum Korrigieren einer Priifung verwenden wiirden. Testen Sie ihre Losung zuerst ausgiebig mit
“GraphExecutionTest.java” (am besten fiigen Sie selber neue Tests hinzu) und dann kénnen Sie
“GradingGraphExecutionTest.java” verwenden, um zu sehen, wie ihre Lésung an einer Priifung
abgeschnitten hitte.

Probleme Losen: Executable Graph

 ADD Node: Enthalten value a und wir setzen (sum, counter) auf (sum + a, counter + 1).
Kinderknoten werden bei der Ausfuhrung ignoriert.

« SEQ Node: Kinderknoten werden nacheinander ausgefuhrt. Reihenfolge ist egal.
Das value Attribut wird ignoriert.

 CHOICE Node: Ein beliebiger Knoten wird ausgefuhrt. Das value Attribut wird ignoriert.

Probleme Losen: Executable Graph

1"

Probleme Losen: Executable Graph

Startzustand: (1, 2)

Probleme Losen: Executable Graph

Startzustand: (1, 2)

<« Wir beginnen hier.

Probleme Losen: Executable Graph

(1,2)

(1,2)

Probleme Losen: Executable Graph

(1,2)

(1+1,2+1)

Probleme Losen: Executable Graph

(1,2)

(2,3)

Probleme Losen: Executable Graph

(2,3)

Probleme Losen: Executable Graph

(2,3)

Probleme Losen: Executable Graph

(2,3)

Teilproblem

Probleme Losen: Executable Graph

(2,3)

(2,3)

Probleme Losen: Executable Graph

(2,3)

(2,3)

Teilproblem

21

Probleme Losen: Executable Graph

(2,3)

(2,3)

(2,3)

e

Probleme Losen: Executable Graph

(2,3)

(2,3)

(2,3)

Probleme Losen: Executable Graph

(2,3)

(2,3)

(6,4)

e

Probleme Losen: Executable Graph

(2,3)

(2,3)

(6,4)

Probleme Losen: Executable Graph

(2,3)

(2,3)

(9,5)

26

Probleme Losen: Executable Graph

(2,3)

(9,5)

Probleme Losen: Executable Graph

(2,3)

(9,5)

Probleme Losen: Executable Graph

(2,3)

(7,6)

Probleme Losen: Executable Graph

(7,6)

@\

Probleme Losen: Executable Graph

(7,6)

o

Probleme Losen: Executable Graph

(7,6)

Probleme Losen: Executable Graph

(12,7)

Probleme Losen: Executable Graph

34

Probleme Losen: Executable Graph

Startzustand: (0,0)

2

\

Probleme Losen: Executable Graph

Startzustand: (0,0)

Probleme Losen: Executable Graph

Startzustand: (1,1)

o

\

Probleme Losen: Executable Graph

Startzustand: (1,1)

Probleme Losen: Executable Graph

Startzustand: (1,1)

Wir haben jetzt die
Wahl zwischen
zwei Kinderknoten.

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(1,1) (1,1)

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(1,1) (1,1)

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(5,2) (1,1)

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(5,2) (1,1)

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(8,3) (1,1)

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(8,3) (1,1)

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(8)3) (_1)2)

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(8)3) (_1)2)

Probleme Losen: Executable Graph

Resultat 1 Resultat 2
(8)3) ('1)2)

Wir speichern alle
Q moglichen Losungen / Q
\ in einer Liste. \

{(8)3))('1:2)}

Probleme Losen: Executable Graph

Losungen: {(8,3),(-1,2)}

Probleme Losen: Executable Graph

Wir mussen jedes
Zwischenresultat in
der Liste updaten.

Losungen:|{(8,3),(-1,2)}

Probleme Losen: Executable Graph

Losungen: {(8+5,3+1), (-1+5,2+1)}

Probleme Losen: Executable Graph

Lasungen: {(13;4)) (4) 3)}

Wie losen wir das Problem?

* Wir nutzen eine Helfermethode allResultsGo welche statt nur einem Programmstate eine
Liste von Programmstates als Parameter hat.

« ADD: Fur alle Zwischenresultate addiere value dazu, erhohe den Counter um 1 und fuge das
Resultat zu next hinzu.

« SEQ: Rufe fur alle Kinderknoten die Methode allResultsGo auf. Wir speichern die
zuruckgegebene Liste und nutzen diese als Parameter fur den nachsten Kinderknoten.

« CHOICE: Rufe fur alle Kinderknoten die Methode allResultsGo auf. Wir berechnen die
Resultate fur jeden Kinderknoten separat und fugen die Listen zusammen.

public static LinkedProgramStatelist allResultsGo(Node n, LinkedProgramStatelList states) {
if (n.getType().equals("ADD")) { N Lisie ofi
LinkedProgramStatelList next = new LinkedProgramStatelList(); «—— erstellt, da wir nicht
for (int i = @; i < states.size; i += 1) { siEEIEEs Enelain el
ProgramState state = states.get(i);
next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));
}

return next;

54

public static LinkedProgramStatelist allResultsGo(Node n, LinkedProgramStatelList states) {
if (n.getType().equals("ADD")) {

LinkedProgramStatelList next = new LinkedProgramStatelList();

for (int i = @; i < states.size; i += 1) {
ProgramState state = states.get(i);
next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));

}

FEEARD R Fir jedes Zwischenresult in der Liste states wird value zur Summe
} hinzugeflgt und der Counter erhoht.

65

public static LinkedProgramStatelist allResultsGo(Node n, LinkedProgramStatelList states) {
if (n.getType().equals("ADD")) {

LinkedProgramStatelList next = new LinkedProgramStatelList();

for (int i = @; i < states.size; i += 1) {
ProgramState state = states.get(i);
next.addLast(new ProgramState(state.getSum() + n.getValue(), state.getCounter() + 1));

}

FEEARD R Fir jedes Zwischenresult in der Liste states wird value zur Summe
} hinzugeflgt und der Counter erhoht.

56

public static LinkedProgramStatelist allResultsGo(Node n, LinkedProgramStatelList states) {

} else if (n.getType().equals("SEQ")) { V_/ir verén_der_n die_ Liste auf welghe states yerweist
nicht, weil wir bei ADD notes eine neue Liste
erstellen. Hier wird aber keine Kopie erstellt!

for (Node ch : n.getSubnodes()) { //Recursively update the results

LinkedProgramStatelList next = states; *”//////

next = allResultsGo(ch, next);
}

return next;

57

public static LinkedProgramStatelist allResultsGo(Node n, LinkedProgramStatelList states) {

} else if (n.getType().equals("SEQ")) {

LinkedProgramStatelList next = states;

for (Node ch : n.getSubnodes
(8 2 Wir rufen fur jeden

next = allResultsGo(ch, next); Kinderknoten die
} Methode rekursiv auf.

return next;

public static LinkedProgramStatelist allResultsGo(Node n, LinkedProgramStatelList states) {

} else if (n.getType().equals("CHOICE")) {

LinkedProgramStatelList next = new LinkedProgramStatelList();

for (Node ch : n.getSubnodes()) {

LinkedProgramStatelList results = allResultsGo(ch, states); Fiir jeden Kinderknoten wird ein

for (int 1 = @; 1 < results.size; i += 1) { Liste zurlickgegeben und wir

next.addLast(results.get(i)); figen diese dann zusammen.

}

return next;

}

return null;

59

7,
A
g’
\

\\

v'*;
/'

NS
%?‘t{\\"}‘é &7 ‘I'i 7= N NS ST /;
S N VX FKLE NI KL 7~ NN <
S XRSNEGEET T NSRRI G LI, 77 %
X IR ETEL 2 RIQESISAEEX RS
2 e ég}};:};;ﬁ g}:‘;{:{fﬁ én\‘:g‘?o:‘&’é};@'z.ﬁ'#‘-* == v
SoOCX XY XA K Ee— 4 N KA\ >
O LT ST SO
2N ISR AX IR 2 PSRN SK X
v VANV Oaeivas Vitvas e\ Za
T o O ST RGO S L KK
KBRS SIREFIIIE SR S
— éé’fé;:’ﬁ‘é"& SOE | e TN Jg% ==L
R PNG K KRR ® 7K ERIEST L7
A KOS TR ST KSR RS 7 2
X5 %/‘\.c» SO 7R 2 40./‘V.¢v S 77
7RSSR S ‘/.,f,,:l:l'A SN
7228 I[N
Ll Q\§§
SN

—7/
VALl — N NN R~ N N

SO §

NN R e Nt R NS NN o U S i i S N S N O

Klassen: Neural Network

61

Klassen: Neural Network

Ziel: Al in Java. Daflur brauchen wir Neuronale Netwerke (NNs)

 Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk
modelliert.

Neuron

Klassen: Neural Network

Ziel: Al in Java. Daflur brauchen wir Neuronale Netwerke (NNs)

 Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk
modelliert.

Ein “Layer”
von einem
NN.

63

Klassen: Neural Network

Ziel: Al in Java. Daflur brauchen wir Neuronale Netwerke (NNs)

 Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk
modelliert.

Zwei Layers 11
und 12 welche
durch Kanten
verbunden sind,
welche jeweils ein
Gewicht besitzen.

64

Klassen: Neural Network

Ziel: Al in Java. Daflur brauchen wir Neuronale Netwerke (NNs)

 Wir schreiben also eine Klasse NeuralNetwork, welche ein neuronales Netzwerk
modelliert.

Das NN

65

Klassen: Neural Network

Das Neural Netzwerk ist aber nicht nur eine Ansammlung an Layers, Weights und
Neuronen (was einen Typ definiert). Es besitzt zusatzlich ein Verhalten, welches durch
Methoden der Klasse definiert wird.

Das NN

66

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(9);
}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}

67

/ Klasse (gespeichert in Neuron.java) — public access modifier

public class Neuron {
private int value; «

public Neuron(int value) {
this.value = value;

}

public Neuron() {
this(9);
}

public int getValue() {
return value;

}

public void setValue(int value) {
this.value = value;

}

Attribut — private access modifier

Wir wollen, dass jeder die Klasse nutzen kann,
aber der Zugriff auf die Attribute nur durch
Methoden der Klasse erlaubt ist.

68

public class Neuron {
private int value;

public Neuron(int value) {
this.value = value; ‘\\\\\\\\\
}

Konstruktoren

public Neuron() { <+
this(9);
}

public int getValue() { 4\\\\\\55\\\\\
Getter und Setter Methoden

return value;

¥ ‘//////
public void setValue(int value) {

this.value = value;

}

69

. [5! ublic class Neuron
public class Layer { o« ’ private Mtvami;
private Neuron[] neurons; & ::

ivate doubl ichts: by o public Neuron(int value) {
private double[] weights; ¢ this.value = value;

}

public Layer(Neuron[] neurons, double[] weights) { public Neuron() {

this.neurons = neurons; this(@);
this.weights = weights;)
} public int getValue() {
return value;
}
public Layer() {
thi 11 11): public void setValue(int value) {
1S(nu » nu)J this.value = value;
} }

}

public double[] getWeights() {
return weights;

¥ Ein Benutzer kann nach dem Erstellen eines Layers

nur noch die Weights andern, nicht mehr aber die

ublic void setWeights(double weights .
’ ghts(L] ghts) { interne Struktur des Layers.

this.weights = weights;

}

public void changeWeight(int index, double value) { . —— Klassenmethode — auch Member-Methode
this.weights[index] = value;
}

70

ol ckEss LaEP § ~ public class Neuron {
private Neuron[] neurons; E":‘: private int value;
private double[] weights;

public Neuron(int value) {

public class NeuralNetwork {

A ~ P public.Layer(Neur‘on[] neurons, double[] weights) { i Vel o Vellms
private Layer[] layers; 53 s e I , :
v v . }
. ublic Layer() { public Neuron() {
public NeuralNetwork(Layer[] layers) { : this(null, null); this(a);
this.layers = layers; , , }
public double[] getWeights() {
} return weights; public int getValue() {
¥ return value;
public void setWeights(double[] weights) { }
. this.weights = weights;
pUbllC .Neur‘alNetwor‘k() { } public void setValue(int value)
thlS (nU].l) ; public void changeWeight(int index, double value) { {
this.weights[index] = value; this.value = value;
} ,)
}
ublic Layer getOutputs , ,
P yer & puts () { Layer.java Neuron.java

return this.layers[layers.length - 1];
}

public void train() {
// TODO Hier geben wir dem User nur Zugriff auf den Output
by des NNs der Rest geschieht intern.

7

NeuralNetwork { ayer { Neuron {
Layer[] layers; EA£§:H ;xgﬂzf int value;
NeuralNetwork(Layer[] layers) { Layer(Neuron Neuron(int value) {

. rs = 1 rs: .neurons = neurons; .value = value:
Leipare ayers; .weights = weights; aiue a ’

NeuralNetwork() { fye"o { y Neuron() {
(null); ’ ’ (0);

double[] getWeights() {
return weights;

Layer getOutputs() { int getValue() {
return .layers[layers.length - 1]; return value;
void setWeights(double[] weights) {
.weights = weights;

void train() { void setValue(int value) {
void changeWeight(int index, double value) { value = value:
.weights[index] = value; : ’

NeuralNetwork.java Layer.java Neuron.java

72

Klassen: Neural Network

Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im
nachsten Layer mit Kanten verbinden wollen?

Neuron

73

Klassen: Neural Network

Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im
nachsten Layer mit Kanten verbinden wollen?

Ein boolean array pro /

Neuron wurde reichen.

1o o 0
1 2 3 4

Input Hidden Output
Layer Layer Layer

Klassen: Neural Network

Problem: Was wenn wir nicht jedes Neuron in einem Layer mit allen Neuronen im
nachsten Layer mit Kanten verbinden wollen?

Ein boolean array pro /

Neuron wurde reichen.

1o o 0
1 2 3 4

Vererbung!

Input Hidden Output
Layer Layer Layer

NeuralNetwork {

SparseNetwork NeuralNetwork { Layer[] layers;
)

boolean[][] connections; NeuralNetwork(Layer[] layers) {

. .layers = layers;
SparseNetwork(Layer[] layers, boolean[][] connections) {

(layers);

.connections = connections; NeuralNetwork() {

()s

SparseNetwork() {

SparseNetwork(s Layer getOutputs() {

return .layers[layers.length - 1];

¥

@Override
void train() {

void train() {

SparseNetwork.java NeuralNetwork.java

Layer.java

76

SparseNetwork NeuralNetwork {
boolean[][] connections;

SparseNetwork(Layer[] layers,
QEVEIEIE
.connections = connections;

boolean[][] connections) {

}
SparseNetwork() {
SparseNetwork(’ ¥ Connections Array pro Layer.
} In jedem Layer ein Array pro
Neuron.
@Override

void train() {

SparseNetwork NeuralNetwork {
boolean[][] connections;

SparseNetwork(Layer[] layers,
QEVEIEIE
.connections = connections;

boolean[][] connections) {

}
SparseNetwork() {
Spar'seNetwor‘k(’)) Die restlichen Attribute
} werden von NeuralNetwork
geerbt.
@Override

void train() {

SparseNetwork
boolean[][] connections;

SparseNetwork(Layer[] layers, boolean[][] connections) {

QEVEIEIE
.connections = connections;
}
SparseNetwork() {
SparseNetwork(;);
}
@Override

void train() {

NeuralNetwork {

Konstruktoren werden nie geerbt!

SparseNetwork
boolean[][] connections;

NeuralNetwork {

SparseNetwork(Layer[] layers, boolean[][] connections) {

QEVEIEIE
.connections = connections;
}
SparseNetwork() {
SparseNetwork(;);
}
@Override

void train() {

Wir rufen den Konstruktor der
Superklasse und initialisieren das
Connections-Array zusatzlich.

SparseNetwork NeuralNetwork {
boolean[][] connections;

SparseNetwork(Layer[] layers, boolean[][] connections) {
QEVEIEIE
.connections = connections;

SparseNetwork() {
SparseNetwork(;);

¥

Die train-Methode aus der Superklasse
kennt kein connection Array. Wir
uberschreiben diese Methode also.

@Override <«
void train() {

SparseNetwork NeuralNetwork {
boolean[][] connections;

SparseNetwork(Layer[] layers, boolean[][] connections) {
QEVEIEIE
.connections = connections;

SparseNetwork() {
SparseNetwork(;);

¥

@Override stellt sicher, dass dies wirklich
eine Uberschreibung ist. Ansonsten gibt
es einen Fehler bei der Ausfuhrung.

@Override <«
void train() {

Klassen: Neural Network

Wir konnten diverse neuronale Netzwerke so durch eine Klasse beschreiben...

Object

i~e0en9e

von der Klasse Object.

Object | «— Alle Klassen sind Subklassen

84

SparseNetwork ist auch ein NeuralNetwork.

Object

E]

85

NeuralNetwork ist kein SparseNetwork.

Object

E]

86

Diese zwei Klassen erben beide von
NeuralNetwork, aber sie sind nicht direkt verwandt.

Object

87

Teaser: LinkedList vs ArrayList

ArrayList

Wir benutzen die ArrayList als ein Array ohne fixe Lange. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen).

Initialisieren mit Typ int = new int[5]; = new ArraylList<Integer>();

Initialisieren mit Typ double = new double[5]; = new ArraylList<Double>();

Initialisieren mit Typ boolean = new boolean[5]; = new ArraylList<Boolean>();

ArrayList

Wir benutzen die ArrayList als ein Array ohne fixe Lange. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen).

Lese Element an Index i arr[i] arrList.get(i)
Element an Index i auf e setzen arr[i] = e; arrList.set(i, e);
Erstes Element arr[9] arrList.getFirst()
Letztes Element arr[arr.length - 1] arrList.getlLast()

Lange arr.length arrList.size()

ArrayList

Wir benutzen die ArrayList als ein Array ohne fixe Lange. Statt int, boolean, double
benutzen wir Integer, Boolean, Double (die Wrapper-Typen).

Fiuge Element e an Index i hinzu arrList.add(i, e)
Fuge Element e am Anfang der Liste hinzu arrList.addFirst(e);
Fuge Element e am Ende der Liste hinzu arrList.addLast(e)
Prife ob Element e enthalten ist arrList.contains(e)

In Array umwandeln arrList.toArray()

LinkedList

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde.
Sie erlaubt effizientes entfernen / hinzufugen von Elementen und eignet sich deshalb
sehr gut als Queue / Stack.

Initialisieren mit Typ int = new int[5]; = new LinkedList<Integer>();
Initialisieren mit Typ double = new double[5]; = new LinkedList<Double>();
Initialisieren mit Typ boolean = new boolean[5]; = new LinkedList<Boolean>();

Ebenfalls funktionieren alle vorherigen Methoden von ArrayList auch fur die LinkedList.

LinkedList

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde.
Sie erlaubt effizientes entfernen / hinzufugen von Elementen und eignet sich deshalb
sehr gut als Queue / Stack.

Liste als Stack (Element entfernen) list.pop()
Liste als Stack (Element e hinzufiugen) list.push(e)
Liste als Queue (Element entfernen) list.poll()

Liste als Queue (Element e hinzufiuigen) list.add(e)

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesu‘w
neps

Sie erlaubt effizientes entfernen / hinzufiugen von Elementen
sehr gut als Queue / Stack.

Operation ini arcist 1list

ist.pop()

\
¥

ement e hinzufugen) list.add(e)

Liste als Stack (Element entfernen)‘\ ‘

Liste als Stack (Element e list.push(e)

Liste als Queu

nen) list.poll()

\ %

urde.
h deshalb

LinkedList

Wir benutzen die LinkedList wie die Liste, welche in der Vorlesung konstruiert wurde.
Sie erlaubt effizientes entfernen / hinzufugen von Elementen und eignet sich deshalb
sehr gut als Queue / Stack.

Liste als Stack (Element entfernen) list.removeFirst()
Liste als Stack (Element e hinzufiugen) list.addFirst(e)
Liste als Queue (Element entfernen) list.removelast()

Liste als Queue (Element e hinzufiuigen) list.addFirst(e)

Listen

LinkedLists

LinkedLists

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

LinkedLists

Referenz auf Objekt des selben Typs!

-
class Node {
int value; ‘//////////////
Node next;

Node(int value) {
this.value = value;
this.next = null;

LinkedLists

Referenz auf Objekt des selben Typs!

/

class Node {
int value;

Node next;

Node(int value) {
this.value
this.next

value;
null;

}
}

single linked list Knotenaufbau

var

* value

-

* next

* value

* next

* value
* next

101

LinkedLists

class Node {
int value;

Node next;
Node head = new Node(42);
Node(int value) { head.next = new Node(-3);
this.value = value; head.next.next = new Node(17);
this.next = null;

LinkedLists

class Node {
int value;
Node next;

Node head new Node(42);

Node(int value) { head.next = new Node(-3);
this.value = value; head.next.next = new Node(17);

this.next = null;

Node

e value =
e next =

103

LinkedLists

class Node {
int value;
Node next;

Node head new Node(42);

Node(int value) { head.next = new Node(-3);
this.value = value; head.next.next = new Node(17);

this.next = null;

Node

* value =42
* next =

104

LinkedLists

class Node {
int value;

Node next;
Node head = new Node(42);

Node(int value) { head.next = new Node(-3);
this.value = value; head.next.next = new Node(17);
this.next = null;

}

}
* value = 42
* next =

105

LinkedLists

class Node {
int value;
Node next;
Node head = new Node(42):
Node(int value) { head.next = new Node(-3);
this.value = value; head.next.next = new Node(17);
this.next = null;
}
}
WY Node PR Node PR nul
* value = 42 * value = -3
* next = * next =

106

LinkedLists

class Node {
int value;

Node next;
Node head = new Node(42);

Node(int value) { next = new Node(-3);
this.value = value; ead.next.next = new Node(17);
this.next = null;

}

}
— — 3 -G
* value = 42
* next =

107

LinkedLists

class Node {
int value;
Node next;

Node head new Node(42);

Node(int value) { heaqd.pext = new Node(-3);
this.value = value; head.next.next = new Node(17);

this.next = null;

) -
head

* value =42
* next =

108

LinkedLists

class Node {
int value;

Node next;
Node head = new Node(42);

Node(int value) { head Jnext|= new Node(-3);
this.value = value; head.next.next = new Node(17);
this.next = null;

}

}
* value = 42

109

LinkedLists

class Node {
int value;

Node next;
Node head = new Node(42);
Node(int value) |{ head.next =| new Node(-3);
this.value = value; head.next.next = new Node(17);
this.next = null;
}
}
RIS Node PR Node
* value = 42 * value =
* next = * next =

110

LinkedLists

class Node {
int value;

Node next;
Node head = new Node(42);
Node(int value) { head.next =| new Node(-3);
this.value = value; head.next.next = new Node(17);
this.next = null;
}
}
RPN Noco R Node
* value =42 * value = -3
* next = * next =

111

LinkedLists

class Node {
int value;
Node next;
Node head = new Node(42);
Node(int value) { head.next =| new Node(-3);
this.value = value; head.next.next = new Node(17);
|this.next = nuffa
}
}
WP Node PR Node PRnul
* value = 42 * value = -3
* next = * next =

112

LinkedLists

class Node {
int value;
Node next;
Node head = new Node(42);
Node(int value) { head.next = new Node(-3);
this.value = value; head.next.next = new Node(17);
this.next = null;
}
}
o Node [Node Node null
ea
* value uljv * value J * value ﬂj’
* next = * next = * next =

113

LinkedLists

class Node {
int value;
Node next;
Node head = new Node(42);
Node(int value) { head.next = new Node(-3);
this.value = value; head.next.next = new Node(17);
this.next = null;
}
}
o Node [Node Node null
ea
* value =4j’ * value J * value ﬂj’
* next = * next = * next =

114

LinkedLists

class Node {
int value;
Node next;

Node(int value) { head.next.next = new Node(15);
this.value = value;
this.next = null;

}
}
o Node [Node Node null
ea
* value uljv * value J * value ﬂj’
* next = * next = * next =

115

LinkedLists

class Node {
int value;

Node next;
Node(int value) { head.next.next = new Node(15);
this.value = value; was passiert nun?

this.next = null;

}
}

single linked list Knotenaufbau

I

* value =42 e value =-3 e value = 17

* next = * next = * next =
\» Node

e value = 15
* next = 116

LinkedLists

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

head.next.next = new Node(15);

head.next = head.next.next;

* value =42 * value =-3

e next =

-next=—\\\\\\>

e (-
* value = 17

* next =

e value = 15
* next =

117

LinkedLists

class Node {

int value; head.next.next = new Node(15);
Node next; was passiert nun?

Node(int value) {

this.value = value; ‘.next = head.next.next;

this.next = null; was passiert nun?

}
}

single linked list Knotenaufbau

head

* value =42 e value =-3 e value = 17

-next=—//////>-next= ~next=—//////'
.

e value = 15
* next =

118

LinkedLists

class Node {
int value; head.next.next = new Node(15);
Node next; was passiert nun?

Node(int value) {

th%s.value = value; heaJDLext = head.next.next;
this.next = null; was passiert nun?

}
}

single linked list Knotenaufbau

head

» value = 42 e value = -3 * value = 17
e next =

* next = * next =
\» Node
e value = 15
* next = 119

LinkedLists

class Node {
int value; head.next.next = new Node(15);
Node next;

Node(int value) {

this.value = value; head= head.next.next;
this.next = null;

}
}
e
e value = * value = - * value =

e|next =- * next = * next =
\» Node

e value = 15
* next = 120

LinkedLists

class Node {

int value; head.next.next = new Node(15);
Node next; was passiert nun?

Node(int value) {

th%s.value = value; head.next =next.next;
this.next = null; was passiert nun?

}
}

single linked list Knotenaufbau

head

* value =42 e value =-3 e value = 17

-next=—//////>-next= ~next=—//////'
.

e value = 15
* next =

121

LinkedLists

class Node {
int value; head.next.next = new Node(15);
Node next; was passiert nun?

Node(int value) {

th%s.value = value; head.next = head]next.next;
this.next = null; was passiert nun?

}
}

single linked list Knotenaufbau

head

» value = 42 e value = -3 * value = 17
e next =

* next = * next =
\» Node
e value = 15
* next = 122

LinkedLists

class Node {
int value;
Node next;

Node(int value
this.value
this.next

) A

= value;
= null;

.

* value =42
e|next =-

e value = -3

-next=~\\\\\\>

head.next.next = new Node(15);

head. next;

head.next =

* value = 17
* next =

e value = 15
* next =

123

LinkedLists

class Node {
int value; head.next.next = new Node(15);
Node next; was passiert nun?

Node(int value) {

th%s.value = value; head.next = head.next[bext;
this.next = null; was passiert nun?

}
}

single linked list Knotenaufbau

ea

-vaMe 42 * value = -3 e value = 17
* next = * next =) enext=
\> Node

e value = 15

e next = 124

LinkedLists

class Node {

int value; head.next.next = new Node(15);
Node next; was passiert nun?

Node(int value) {

th%s.value = value; head.next = head.next next}
this.next = null; was passiert nun?

}

}

single linked list Knotenaufbau

R s

* value =42 e value =-3 e value = 17
* next = next =- * next =
Node

* value = 15

e next = 125

LinkedLists

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

head.next.next = new Node(15);

head.next = head.next.next;

* value =42 * value =-3

e next =

-next=—\\\\\\>

e (-
* value = 17

* next =

e value = 15
* next =

126

LinkedLists

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

head.next.next = new Node(15);

head.next = head.next.next;

SIS Noce

* value =42 * value =-3

* value = 17
* next =

e value = 15
* next =

127

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null) {
this.next = null; System.out.println(current.value);
} current = current.next;
} }

-

* value =42 * value = -3 * value = 17
e next = e next = * next =
Output:

128

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) {

Node current = head;

this.value = value; while (current I= null) {
this.next = null; System.out.println(current.value);
} current = current.next;
} }
p
current
S Node B Node BRnul
head
* value =42 * value = -3 * value = 17
* next = * next = * next =
Output:

129

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null)| {
this.next = null; System.out.printIn(current.value);
} current = current.next;
} }
p
current
= Node g Node PR null
head
* value =42 * value = -3 * value = 17
* next = * next = * next =
Output:

130

LinkedLists durchlaufen

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

Node current = head;
while (current != null) {

System.out.println(current.value)
current = current.next;

current }
value =42

e next =

e value =-3 * value =17
* next =

- o

* next =

Output: 42

131

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null) {
this.next = null; System.out.println(current.value);
} current = current.next;
} }
current \
BRIERY Nodo PRiNode BRENode JRnul
* value =42 * value = -3 * value = 17
* next = * next = * next =
Output: 42

132

LinkedLists durchlaufen

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

Node current = head;

while (current != null)| {

System.out.printIn(current.value);

current = current.next;

current

head

* value J * value ﬂj'

* next =

* next =

Output: 42

133

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null) {
this.next = null; System.out.println(current.value);
} current = current.next;
Y }
current \
. Mo B
* value = 42 * value = -3 * value = 17
* next = * next=— * next =

Output: 42 -3
134

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null) {
this.next = null; System.out.println(current.value);
} current = current.next;
t }
current —~\\\\\\\>
WP Node PR Node PEdNode PR nul
* value =42 * value = -3 * value = 17
* next = * next = * next =

Output: 42 -3
135

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null)| {
this.next = null; System.out.println(current.value);
} current = current.next;

} }

current

e next = * next * next =

e value =42 » value

Output: 42 -3
136

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null) {
this.next = null; System.out.println(current.value);
} current = current.next;
Y }
current —~\\\\\\\>
W Nodo PR Node PEINode Bnul
* value = 42 * value = -3 * value = 17
* next = * next = * next =

Output: 42 -3 17
137

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null) {
this.next = null; System.out.println(current.value);
} current = current.next;
t }
current \
RPN Node PR Node PR Node PEnul
* value =42 * value = -3 * value = 17
* next = * next = * next =

Output: 42 -3 17
138

LinkedLists durchlaufen

class Node {
int value;
Node next;

Node(int value) {
this.value = value;
this.next = null;

Node head = new Node(42);
head.next = new Node(-3);
head.next.next = new Node(17);

Node current =

head;

while (current != null)

{

System.out.println(current.value);
current = current.next;

* value =42
e next =

current
—~*

e value =-3 * value =17

* next = * next =

Output: 42 -3 17

139

LinkedLists durchlaufen

class Node { Node head = new Node(42);
int value; head.next = new Node(-3);
Node next; head.next.next = new Node(17);

Node(int value) { Node current = head;

this.value = value; while (current != null) {
this.next = null; System.out.println(current.value);
} current = current.next;
} }
current \
WY Node BRI Node PR Node PEnul
* value =42 * value = -3 * value = 17
* next = * next = * next =

Output: 42 -3 17
140

Verschiede Typen von LinkedLists

* value * value * value
* next * next * next

Node Node Node null
single LinkedList var /-/'-J'-J'-

i i var
double LinkedList . value . value . value

* next * next * next
* prev * prev * prev

/

141

Verschiede Typen von LinkedLists

value * value * value
next * next * next

Node Node Node null
single LinkedList var — -/' / /-

Node
] Node
. . * value
cycle LinkedList . next e Node
prev value
< * next
Node * prev

* value
* next

* prev
P 142

LinkedLists — bereits implementiert

= |Implementation ist eine double linked list
= Import mit
import java.util.LinkedList;
= |nitialisierung mit
LinkedList<Type> name = new LinkedList<Type>();

e T e e

»Type” muss ein Referenztyp sein

143

LinkedLists — bereits implementiert

= |Implementation ist eine double linked list

. i Diesen Typ
Import mit kann man auch
import java.util.LinkedlList; weglassen

= |nitialisierung mit
LinkedList<Type> name = new LinkedList<Type>();

e T e e

»Type” muss ein Referenztyp sein

144

LinkedLists — Methoden

Methode (LinkedList<String>) Bedeutung

list.addFirst("C"); Hinzufligen eines Elements

list.add(1, “B“); - am Anfang

list.add(“A*); - an einer bestimmten Position
- am Ende

list.removeFirst(); Entfernen eines Elementes

list.remove(l); - am Anfang

list.removelLast(); - an einer bestimmten Position
- am Ende

String element = list.get(0); Lesen eines Elementes an einer
bestimmten Position

int size = list.size(); Lange der Liste

list.contains("A"); Uberprifen, ob ein Element enthalten ist

list.clear(); Liste leeren

alle Methoden siehe https://docs.oracle.com/en/javal/javase/21/docs/api/java.base/java/util/LinkedList.html

145

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/LinkedList.html

ArraylLists

ArraylLists

= |Implementation via Arrays

. i Diesen Typ
Import mit kann man auch
import java.util.Arraylist; weglassen

= |nitialisierung mit /

ArraylList<Type> name = new ArraylList<Type>();

2T e e

»Type” muss ein Referenztyp sein

147

Arraylists — Methoden

Die meisten Methoden sind absolut gleich!

alle Methoden siehe https://docs.oracle.com/en/javaljavase/21/docs/api/java.base/java/util/ArrayList.html

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html

Arraylists — Methoden

Array ArrayList
Grosse fixe Grosse dynamische Grosse
speichert... primitive Datentypen oder Objekte |nur Objekte (unterstutzt Wrapper-Klassen)
Deklaration int[] myArray = new int[3]; ArraylList<Integer> myArraylList = new ArraylList<>();
Lesen int x = myArray[0]; myArraylList.get(9);
Schreiben myArray[@] = 3; myArraylList.set (9, 3);
Lange myArray.length; myArrayList.size();
Element --- myArraylList.add(35);
hinzufligen myArraylList.add(1, 35);
Element - myArraylList.remove(1);
entfernen myArraylList.remove(e);
print Arrays.toString(myArray); myArraylList.toString();

alle Methoden siehe https://docs.oracle.com/en/javal/javase/21/docs/api/java.base/java/util/ArrayList.html

149

https://docs.oracle.com/en/java/javase/21/docs/api/java.base/java/util/ArrayList.html

LinkedList vs ArrayList

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Hinzuflgen eines Elements

Zugriffszeit

Einfugen an einer beliebigen
Position

Einflgen am Anfang

Loschen am Anfang

Einflgen am Ende

Loschen am Ende

151

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Doppelt verkettete Liste

Array

Hinzuflgen eines Elements

Zugriffszeit

Einfugen an einer beliebigen
Position

Einflgen am Anfang

Loschen am Anfang

Einflgen am Ende

Loschen am Ende

152

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Doppelt verkettete Liste

Array

Hinzuflgen eines Elements

O(n), aber nie Kopieren aller
Daten notwendig

O(1), manchmal O(n) durch
Kopieren aller Daten

Zugriffszeit

Einfugen an einer beliebigen
Position

Einflgen am Anfang

Loschen am Anfang

Einflgen am Ende

Loschen am Ende

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Doppelt verkettete Liste

Array

Hinzuflgen eines Elements

O(n), aber nie Kopieren aller
Daten notwendig

O(1), manchmal O(n) durch
Kopieren aller Daten

Zugriffszeit

O(n)

o(1)

Einfugen an einer beliebigen
Position

Einflgen am Anfang

Loschen am Anfang

Einflgen am Ende

Loschen am Ende

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Doppelt verkettete Liste

Array

Hinzuflgen eines Elements

O(n), aber nie Kopieren aller
Daten notwendig

O(1), manchmal O(n) durch
Kopieren aller Daten

Zugriffszeit

o(1)

Einfugen an einer beliebigen
Position

O(n) wegen Verschiebung
der Elemente

Einflgen am Anfang

Loschen am Anfang

Einflgen am Ende

Loschen am Ende

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Doppelt verkettete Liste

Array

Hinzuflgen eines Elements

O(n), aber nie Kopieren aller
Daten notwendig

O(1), manchmal O(n) durch
Kopieren aller Daten

Zugriffszeit O(n) o(1)

Einfugen an einer beliebigen | O(n) O(n) wegen Verschiebung
Position der Elemente

Einflgen am Anfang O(1) O(n)

Loschen am Anfang

Einflgen am Ende

Loschen am Ende

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Doppelt verkettete Liste

Array

Hinzuflgen eines Elements

O(n), aber nie Kopieren aller
Daten notwendig

O(1), manchmal O(n) durch
Kopieren aller Daten

Zugriffszeit O(n) o(1)

Einfugen an einer beliebigen | O(n) O(n) wegen Verschiebung
Position der Elemente

Einflgen am Anfang O(1) O(n)

Loschen am Anfang O(1) O(n)

Einflgen am Ende

Loschen am Ende

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Doppelt verkettete Liste

Array

Hinzuflgen eines Elements

O(n), aber nie Kopieren aller
Daten notwendig

O(1), manchmal O(n) durch
Kopieren aller Daten

Zugriffszeit O(n) o(1)

Einfugen an einer beliebigen | O(n) O(n) wegen Verschiebung
Position der Elemente

Einflgen am Anfang O(1) O(n)

Loschen am Anfang O(1) O(n)

Einflgen am Ende O(1) O(1), falls Array gross genug

Loschen am Ende

LinkedList vs ArraylList

Eigenschaft

LinkedList

ArrayList

Im Speicher

Doppelt verkettete Liste

Array

Hinzuflgen eines Elements

O(n), aber nie Kopieren aller
Daten notwendig

O(1), manchmal O(n) durch
Kopieren aller Daten

Zugriffszeit O(n) o(1)

Einfugen an einer beliebigen | O(n) O(n) wegen Verschiebung
Position der Elemente

Einflgen am Anfang O(1) O(n)

Loschen am Anfang O(1) O(n)

Einflgen am Ende O(1) O(1), falls Array gross genug
Loschen am Ende O(1) O(1)

LinkedList vs ArraylList

Fur die Implementierung von Stacks eignet sich eine , da
EinfUgen und Entfernen am Anfang/Ende O(1) sind.

FUr Queues ist eine besser geeignet, da sie effizient Einflgen
am Ende und Entfernen am Anfang unterstutzt, ohne Elemente zu

verschieben.

LinkedList vs ArraylList

Fur die Implementierung von Stacks eignet sich eine LinkedList, da
EinfUgen und Entfernen am Anfang/Ende O(1) sind.

FUr Queues ist eine besser geeignet, da sie effizient Einflgen
am Ende und Entfernen am Anfang unterstutzt, ohne Elemente zu

verschieben.

LinkedList vs ArraylList

Fur die Implementierung von Stacks eignet sich eine LinkedList, da
EinfUgen und Entfernen am Anfang/Ende O(1) sind.

FUr Queues ist eine LinkedList besser geeignet, da sie effizient Einfugen
am Ende und Entfernen am Anfang unterstitzt, ohne Elemente zu
verschieben.

Operation LinkedList 1ist LinkedList 1ist

Liste als Stack (Element entfernen) list.pop() list.removeFirst()
Liste als Stack (Element e hinzufugen) list.push(e) list.addFirst(e)
Liste als Queue (Element entfernen) list.poll() list.removeFirst()
Liste als Queue (Element e hinzufigen) | list.add(e) list.add(e)

Vorbesprechung

Aufgabe 1:

Square
Grid

In dieser Aufgabe betrachten wir gerichtete Graphen, wobei es fiir jeden Knoten g hochstens
zwei gerichtete Kanten von g zu anderen Knoten f, h geben kann (f, g, h konnen gleich sein). Wir
unterscheiden dabei zwischen der rechten und der unteren Kante (und damit dem rechten und
dem unteren Knoten).

Die Klasse Node reprasentiert einen Knoten in einem solchen Graphen. Die Methode
Node.getRight () (bzw. Node.getDown()) gibt den rechten Knoten (bzw. unteren Knoten) zurtick
(als Node-Objekt). Wenn der rechte Knoten von ng nicht existiert, dann gibt Node.getRight ()
null zuriick (analog fir den unteren Knoten). Die Methode Node.setRight (Node r) (bzw.
Node.setDown(Node d)) setzt den rechten (bzw. unteren) Knoten.

Das Ziel der Aufgabe ist, einen von einem Node-Objekt definierten Graphen zu analysieren.
Konkret geht es darum, die Grosse des grossten quadratischen Gitters in dem Graphen zu
bestimmen, der mit dem ubergebenen Node-Objekt beschrieben wird, welches den gleichen
Ursprungsknoten wie der Graph hat.

164

Aufgabe 1:

Square
Grid

@) (b)

Abbildung 2: Graphen mit quadratischen Gittern als Teilgraphen

Referenzen vs Objekte

165

Aufgabe 2:

Umkehrung

In einem vorherigen Ubungsblatt haben Sie eine Linked List fiir Integers implementiert. In dieser
Aufgabe fiigen Sie dieser LinkedIntList eine weitere Methode hinzu, welche die Liste umkehrt.
Eine Liste gilt als umgekehrt, wenn fiir jedes Paar von Nodes a und b, fiir welche zuvor a ==
b.next gegolten hat, in der neuen (umgekehrten) Liste b == a.next gilt. Zusétzlich entspricht
nach der Umkehrung der erste Node der neuen Liste dem letzten Node der urspriinglichen Liste
(und umgekehrt).

Vervollstindigen Sie die Methode reverse() in der Klasse LinkedIntList. Die Methode soll,
wie oben definiert, die Liste umkehren. Achten Sie darauf, dass Sie wirklich die Reihenfolge
der Nodes selbst umkehren. Es reicht nicht aus, die Reihenfolge der enthaltenen int-Werte
umzukehren. Es miissen auch in der umgekehrten Liste dieselben Instanzen von IntNodes wie
in der urspriinglichen Liste verwendet werden. Erstellen Sie also keine neuen IntNodes mit
new IntNode().In der Datei “UmkehrungTestjava” finden Sie einen einfachen Test.

166

Aufgabe 3:
“KI” fur

das
Ratespiel

In Ubung 5 implementierten Sie ein Spiel, in welchem der Computer ein Wort auswéhlt und
der Spieler dieses erraten muss. Dort war der Spieler der Benutzer des Programms. In dieser
Aufgabe sollen Sie verschiedene “kiinstliche” Spieler entwickeln. Das heisst, anstelle des Menschen,
der tber die Konsole Tipps eingibt, werden die Tipps von (mehr oder weniger “intelligenten”)
Programmen abgegeben. Ihr Ziel ist es, einen kiinstlichen Spieler zu entwickeln, der tiber mehrere
Spiele hinweg die Wérter in so wenig Versuchen wie méglich errit.

Die Ubungsvorlage enthilt bereits den Code fiir das Ratespiel. Gegeniiber Ubung 5 ist dieser
nun in verschiedene Klassen aufgeteilt. Die drei Hauptklassen sind RateSpiel, Computer und
Spieler. Die Klasse RateSpielApp enthilt eine main-Methode, welche das Spiel aufsetzt und
durchfiihrt. Durch die Aufteilung ist es moglich, mittels Vererbung Spieler mit unterschiedlichem
Verhalten zu schreiben. Die Klasse Spieler enthilt namlich nur die Deklarationen der benotigten
Methoden, aber keine (sinnvolle) Funktionalitat. Subklassen von Spieler tiberschreiben diese
Methoden und definieren damit das Verhalten eines Spielers.

Ein konkreter Spieler ist ebenfalls schon in der Vorlage vorhanden: der KonsolenSpieler.
Dieser besitzt allerdings keine eigene “Intelligenz”, sondern holt sich die Tipps iiber die Konsole
vom Benutzer. Ein RateSpiel mit einem KonsolenSpieler verhilt sich also so wie das Spiel in
Ubung 5. Starten Sie die RateSpielApp und iiberzeugen Sie sich selbst®.

167

Aufgabe 4:

Klassenratsel

In dieser Aufgabe sollen Sie zeigen, dass Sie mit Klassen und Vererbung umgehen kénnen. Im
Anhang A finden Sie ein Programm, welches Instanzen von Klassen erstellt und Methoden
aufruft. Das Programm macht nichts Sinnvolles und dient nur dem Testen Ihrer Fihigkeiten. In
Anhang B befinden sich die verwendeten Klassen, jedoch sind die Klassen noch nicht vollstandig,.
Bei manchen der Klassen fehlt noch die extends-Klausel, welche angibt, dass eine Klasse von
einer anderen Klasse erbt. Thre Aufgabe ist es, die notigen extends-Klauseln hinzuzufiigen, so
dass alles kompiliert und so dass die Ausgabe des Programms von Anhang A am Ende so aussieht
wie im Anhang C gezeigt.

Der Code von Anhang A and Anhang B befindet sich in Threm src-Ordner. Zusitzlich enthalt
“KlassenTest.java” einen Unit-Test, welcher priift, ob die Ausgabe des Programms dem Qutput aus
Anhang C entspricht. Beachten Sie, dass Sie fiir diese Aufgabe ausschliesslich extends-Klauseln
hinzufiigen (diese kann es nur an den grauen Boxen aus Anhang B geben), kein anderer Code
darf verandert werden.

Tipp: Losen Sie die Aufgabe zuerst auf Papier, ohne die Hilfe von Eclipse. Sobald Sie heraus-
gefunden haben, welche Klassen von welchen Klassen erben, testen Sie Ihre Losung in Eclipse.
Dies hilft Thnen, Ihr Wissen tiber Vererbung zu testen. In der Vergangenheit wurden dhnliche
Aufgaben im schriftlichen Teil der Priifung gestellt.

168

Nachbesprechung

Gegeben ist eine Postcondition fiir das folgende Programm

public int compute(String s, char c) {
// Precondition s != null
int x;
int n;

Aufgabe 1:

// Loop Invariante:

Loop_ while (x < s.length()) {

if (s.charAt(x) == c) {

Invariante)

n=n-+1;
=x + 1;
// Postcondition: count(s, c) ==

return n;

}

Die Methode count(String s, char c) gibt zuriick wie oft der Character ¢ im String s vor-
kommt. Schreiben Sie die Loop Invariante in die Datei “LoopInvariante.txt”. Tipp: Benutzen Sie
die substring Methode.

170

Aufgabe 2:
Linked

List

Bisher haben Sie Arrays verwendet, wenn Sie mit einer grosseren Anzahl von Werten gearbeitet
haben. Ein Nachteil von Arrays ist, dass die Grisse beim Erstellen des Arrays festgelegt werden
muss und danach nicht mehr verandert werden kann. In dieser Aufgabe implementieren Sie selbst
eine Datenstruktur, bei welcher die Grosse im Vornherein nicht bestimmt ist und welche jederzeit
wachsen und schrumpfen kann: eine linked list oder verkettete Liste.

Eine verkettete Liste besteht aus mehreren Objekten, welche Referenzen zueinander haben. Fiir
diese Aufgabe besteht jede Liste aus einem “Listen-Objekt” der Klasse LinkedIntList, welches
die gesamte Liste reprasentiert, und aus mehreren “Knoten-Objekten” der Klasse IntNode, eines
fiir jeden Wert in der Liste. Die Liste heisst “verkettet”, weil jedes Knoten-Objekt ein Feld mit
einer Referenz zum nichsten Knoten in der Liste enthalt. Das LinkedIntList-Objekt schliesslich
enthdlt eine Referenz zum ersten und zum letzten Knoten und hat ausserdem ein Feld fiir die
Lange der Liste.

IntNode IntNode IntNode IntNode X
value: i/ value: i/ value: 3./ value: 7./
next : next : next : next :

Abbildung 1: Verkettete Liste mit Werten 1, 3, 3, 7.

171

Aufgabe 2:
Linked

List

Name Parameter Riickg.-Typ Beschreibung

addLast int value void fligt einen Wert am Ende der Liste ein

addFirst int value void fligt einen Wert am Anfang der Liste ein

removeFirst int entfernt den ersten Wert und gibt ihn zuriick

removeLast int entfernt den letzten Wert und gibt ihn zurtick

clear void entfernt alle Wert in der Liste

isEmpty boolean gibt zurtick, ob die Liste leer ist

get int index int gibt den Wert an der Stelle index zuriick

set int index, void ersetzt den Wert an der Stelle index mit value
int value

getSize int gibt zurtick, wie viele Werte die Liste enthalt

Einige dieser Methoden diirfen unter gewissen Bedingungen nicht aufgerufen werden. Zum
Beispiel darf removeFirst () nicht aufgerufen werden, wenn die Liste leer ist, oder get ()
darf nicht aufgerufen werden, wenn der gegebene Index grosser oder gleich der aktuellen
Lange der Liste ist. In solchen Situationen soll sich Thr Programm mit einer Fehlermeldung
beenden. Verwenden Sie folgendes Code-Stiick dafiir:

if (condition) {

Errors.error(message) ;

}
Ersetzen Sie condition mit der Bedingung, unter welcher das Programm beendet werden
soll, und message mit einer hilfreichen Fehlermeldung. Die Errors-Klasse befindet sich
bereits in Threm Projekt, aber Sie brauchen sie im Moment nicht zu verstehen.

172

Aufgabe 3:

Executable
Graph

173

Aufgabe 4:

Energiespiel

In dieser Aufgabe iiben Sie den Umgang mit Enums. Dafiir haben Sie einen Ordner EnergieSpiel
mit drei Klassen GameApp, Game und Player, sowie ein Enum Character. Diese sind bereits so
implementiert, dass alles funktioniert. Die Klasse Player hat jedoch ein Feld character von Typ
String. Java ldsst also zu, dass in diesem Feld ein beliebiger String abgespeichert werden kann.
Das Spiel hat aber eigentlich nur genau drei Moglichkeiten: HONEST, TRICKSTER oder SORCEROR.
Das Enum Character mit diesen drei Optionen existiert bereits. Andern Sie den Typ des Feldes
zu Character und passen Sie den Code in allen drei Klassen so an, dass die Charakter-Logik
tiberall den Typ Character statt String verwendet.

174

Aufgabe 5:
g - Die Bonusaufgabe fiir diese Ubung wird erst am Dienstag Abend der Folgewoche (also am 19.

T H d 11.) um 17:00 Uhr publiziert und Sie haben dann 2 Stunden Zeit, diese Aufgabe zu lésen. Der
I m e Abgabetermin flir die anderen Aufgaben ist wie gewohnt am Dienstag Abend um 23:59. Bitte
planen Sie Thre Zeit entsprechend.

B o n u S Checken Sie mit Eclipse wie bisher die neue Ubungs-Vorlage aus. Importieren Sie das Eclipse-
Projekt wie bisher.

175

	Standardabschnitt
	Slide 1
	Slide 2: Organisatorisches
	Slide 3
	Slide 4

	Probleme lösen
	Slide 5: Probleme Lösen
	Slide 6: Probleme Lösen: Executable Graph
	Slide 7: Probleme Lösen: Executable Graph
	Slide 8: Probleme Lösen: Executable Graph
	Slide 9: Probleme Lösen: Executable Graph
	Slide 10: Probleme Lösen: Executable Graph
	Slide 11: Probleme Lösen: Executable Graph
	Slide 12: Probleme Lösen: Executable Graph
	Slide 13: Probleme Lösen: Executable Graph
	Slide 14: Probleme Lösen: Executable Graph
	Slide 15: Probleme Lösen: Executable Graph
	Slide 16: Probleme Lösen: Executable Graph
	Slide 17: Probleme Lösen: Executable Graph
	Slide 18: Probleme Lösen: Executable Graph
	Slide 19: Probleme Lösen: Executable Graph
	Slide 20: Probleme Lösen: Executable Graph
	Slide 21: Probleme Lösen: Executable Graph
	Slide 22: Probleme Lösen: Executable Graph
	Slide 23: Probleme Lösen: Executable Graph
	Slide 24: Probleme Lösen: Executable Graph
	Slide 25: Probleme Lösen: Executable Graph
	Slide 26: Probleme Lösen: Executable Graph
	Slide 27: Probleme Lösen: Executable Graph
	Slide 28: Probleme Lösen: Executable Graph
	Slide 29: Probleme Lösen: Executable Graph
	Slide 30: Probleme Lösen: Executable Graph
	Slide 31: Probleme Lösen: Executable Graph
	Slide 32: Probleme Lösen: Executable Graph
	Slide 33: Probleme Lösen: Executable Graph
	Slide 34: Probleme Lösen: Executable Graph
	Slide 35: Probleme Lösen: Executable Graph
	Slide 36: Probleme Lösen: Executable Graph
	Slide 37: Probleme Lösen: Executable Graph
	Slide 38: Probleme Lösen: Executable Graph
	Slide 39: Probleme Lösen: Executable Graph
	Slide 40: Probleme Lösen: Executable Graph
	Slide 41: Probleme Lösen: Executable Graph
	Slide 42: Probleme Lösen: Executable Graph
	Slide 43: Probleme Lösen: Executable Graph
	Slide 44: Probleme Lösen: Executable Graph
	Slide 45: Probleme Lösen: Executable Graph
	Slide 46: Probleme Lösen: Executable Graph
	Slide 47: Probleme Lösen: Executable Graph
	Slide 48: Probleme Lösen: Executable Graph
	Slide 49: Probleme Lösen: Executable Graph
	Slide 50: Probleme Lösen: Executable Graph
	Slide 51: Probleme Lösen: Executable Graph
	Slide 52: Probleme Lösen: Executable Graph
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59

	Klassen: Neuronale Netzwerke
	Slide 61: Klassen: Neural Network
	Slide 62: Klassen: Neural Network
	Slide 63: Klassen: Neural Network
	Slide 64: Klassen: Neural Network
	Slide 65: Klassen: Neural Network
	Slide 66: Klassen: Neural Network
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73: Klassen: Neural Network
	Slide 74: Klassen: Neural Network
	Slide 75: Klassen: Neural Network
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81
	Slide 82
	Slide 83: Klassen: Neural Network
	Slide 84
	Slide 85
	Slide 86
	Slide 87
	Slide 88: Teaser: LinkedList vs ArrayList
	Slide 89: ArrayList
	Slide 90: ArrayList
	Slide 91: ArrayList
	Slide 92: LinkedList
	Slide 93: LinkedList
	Slide 94: LinkedList
	Slide 95: LinkedList

	Listen
	Slide 97: Listen
	Slide 98: LinkedLists
	Slide 99: LinkedLists
	Slide 100: LinkedLists
	Slide 101: LinkedLists
	Slide 102: LinkedLists
	Slide 103: LinkedLists
	Slide 104: LinkedLists
	Slide 105: LinkedLists
	Slide 106: LinkedLists
	Slide 107: LinkedLists
	Slide 108: LinkedLists
	Slide 109: LinkedLists
	Slide 110: LinkedLists
	Slide 111: LinkedLists
	Slide 112: LinkedLists
	Slide 113: LinkedLists
	Slide 114: LinkedLists
	Slide 115: LinkedLists
	Slide 116: LinkedLists
	Slide 117: LinkedLists
	Slide 118: LinkedLists
	Slide 119: LinkedLists
	Slide 120: LinkedLists
	Slide 121: LinkedLists
	Slide 122: LinkedLists
	Slide 123: LinkedLists
	Slide 124: LinkedLists
	Slide 125: LinkedLists
	Slide 126: LinkedLists
	Slide 127: LinkedLists
	Slide 128: LinkedLists durchlaufen
	Slide 129: LinkedLists durchlaufen
	Slide 130: LinkedLists durchlaufen
	Slide 131: LinkedLists durchlaufen
	Slide 132: LinkedLists durchlaufen
	Slide 133: LinkedLists durchlaufen
	Slide 134: LinkedLists durchlaufen
	Slide 135: LinkedLists durchlaufen
	Slide 136: LinkedLists durchlaufen
	Slide 137: LinkedLists durchlaufen
	Slide 138: LinkedLists durchlaufen
	Slide 139: LinkedLists durchlaufen
	Slide 140: LinkedLists durchlaufen
	Slide 141: Verschiede Typen von LinkedLists
	Slide 142: Verschiede Typen von LinkedLists
	Slide 143: LinkedLists – bereits implementiert
	Slide 144: LinkedLists – bereits implementiert
	Slide 145: LinkedLists – Methoden
	Slide 146: ArrayLists
	Slide 147: ArrayLists
	Slide 148: ArrayLists – Methoden
	Slide 149: ArrayLists – Methoden
	Slide 150: LinkedList vs ArrayList
	Slide 151: LinkedList vs ArrayList
	Slide 152: LinkedList vs ArrayList
	Slide 153: LinkedList vs ArrayList
	Slide 154: LinkedList vs ArrayList
	Slide 155: LinkedList vs ArrayList
	Slide 156: LinkedList vs ArrayList
	Slide 157: LinkedList vs ArrayList
	Slide 158: LinkedList vs ArrayList
	Slide 159: LinkedList vs ArrayList
	Slide 160: LinkedList vs ArrayList
	Slide 161: LinkedList vs ArrayList
	Slide 162: LinkedList vs ArrayList

	Vor- und Nachbesprechung
	Slide 163: Vorbesprechung
	Slide 164: Aufgabe 1: Square Grid
	Slide 165: Aufgabe 1: Square Grid
	Slide 166: Aufgabe 2: Umkehrung
	Slide 167: Aufgabe 3: “KI” für das Ratespiel
	Slide 168: Aufgabe 4: Klassenrätsel
	Slide 169: Nachbesprechung
	Slide 170: Aufgabe 1: Loop-Invariante
	Slide 171: Aufgabe 2: Linked List
	Slide 172: Aufgabe 2: Linked List
	Slide 173: Aufgabe 3: Executable Graph
	Slide 174: Aufgabe 4: Energiespiel
	Slide 175: Aufgabe 5: Timed Bonus

