252-0027

Einflihrung in die Programmierung
Ubungen

Woche 11: Vererbung

Timo Stucki
Departement Informatik
ETH Ziirich

Organisatorisches

= Mein Name: Timo Stucki
= Bei Fragen: tistucki@student.ethz.ch
Mails bitte mit «[EProg25]» im Betreff
= Neue Aufgaben: Dienstag Abend (im Normalfall)
= Abgabe der Ubungen bis Dienstag Abend (23:59) Folgewoche

= Abgabe immer via Git

Losungen in separatem Projekt auf Git

Discord: timostucki

Inheritance

Extends-Schliisselwort

= extends spezifiziert, dass eine
Klasse von einer anderen erbt

= Wir nennen die erbende Klasse
im Folgenden Subklasse...

= und die vererbende Klasse Tier
Superklasse

Katze

Hund

@ @ -

Vererbungshierarchie

Die Pfeile sind eine

/ “ist ein” - Beziehung
* Ein Hund ist ein Tier.

Nicht alle Tiere sind ein Hund.

Ein Husky ist ein Tier und ein
Hund.

Objekt vs Referenz

new Tier()

new Hund()

'\

AN

new Husky()

Das sind Objekte.

Objekte andern nie
ihren Typ.

Ein Husky-Objekt ist
und bleibt ein Husky-
Obijekt.

Ein Katzen-Objekt kann
kein Lowen-Objekt
werden.

Objekt vs Referenz
1 Das sind Variablen.

Tier t = new Tier()

 Variablen enthalten
Referenzen oder Werte.

1

Tier hd = new Hund()

* Die Referenz in einer
Variable kann sich
durch Zuweisung mit =
andern.

1

Husky hy = new Husky()

Objekt vs Referenz 1 Das ist der Typ der Variable.

Tier t = new Tier()

* Der Typ der Variable
kann sich dynamisch
verandern.

!

Tier hd = new Hund()

+ Eine Variable vom Typ
Tier kann eine
Referenz auf ein Objekt
vom Typ Hund enthalten.

l

Husky hy = new Husky()

10

Objekt vs Referenz

Tier

Im Code
I

Hund Tier hd = new Hund()

A 4

Tier hd new Hund()

Was dies macht.

Husky

Objekt vs Referenz

Tier

Hund

Husky

Tier hd

Tier hd

Objekt vs Referenz

Tier

Hund

Husky

Tier hd

Tier hd

new Hund();

new Hund()

Objekt vs Referenz

Tier

Hund

Husky

Tier hd

Tier hd = new Hund();

A 4

new Hund()

Objekt vs Referenz

Tier hd = new Hund();

. Tier hd2 = new Hund();
Tier

Hund Tier hd

new Hund()

A 4

Tier hd2

new Hund()

\ 4

Husky

Objekt vs Referenz

Tier hd = new Hund();

. Tier hd2 = new Hund();
Tier

Hund Tier hd

new Hund()

A 4

Tier hd2

new Hund()

\ 4

Husky

Objekt vs Referenz

Tier hd = new Hund();

. Tier hd2 = new Hund();
Tier

hd = hd2;

Hund Tier hd

new Hund()

A 4

Tier hd2

new Hund()

\ 4

Husky

Objekt vs Referenz

Tier

Hund

Husky

Tier hd

Tier hd2

Tier hd = new Hund();
Tier hd2 = new Hund();

hd = hd2;

new Hund()

\ 4

new Hund()

Objekt vs Referenz

Tier

Hund

Husky

Tier hd

Tier hd2

Tier hd = new Hund();
Tier hd2 = new Hund();
hd = hd2;

Tier hy = new Husky();

new Hund()

\ 4

new Hund()

Objekt vs Referenz

Tier

Hund

Husky

Tier hd

Tier hd2

Tier hd = new Hund();
Tier hd2 = new Hund();
hd = hd2;

Tier hy = new Husky();

new Hund()

Tier hy

\ 4

new Hund()

\ 4

new Husky ()

20

Objekt vs Referenz

Tier

Hund

Husky

Tier hd

Tier hd2

Tier hd = new Hund();
Tier hd2 = new Hund();
hd = hd2;

Tier hy = new Husky();

hd2 = hy;

new Hund()

\ 4

new Hund()

Tier hy

\ 4

new Husky()

21

Objekt vs Referenz

Tier

Hund

Husky

Die Objekte bleiben

unverandert!
Tier hd new Hund()
Tier hd2 new Hund()

Tier hd = new Hund();
Tier hd2 = new Hund();
hd = hd2;

Tier hy = new Husky();

hd2 = hy;

\ 4

Tier hy new Husky ()

22

Objekt vs Referenz

Tier

Hund

Husky

Die Variable bleibt
vom Typ Tier.

A

Tier hd

Tier hd2

Tier hd = new Hund();
Tier hd2 = new Hund();
hd = hd2;

Tier hy = new Husky();

hd2 = hy;

new Hund()

new Hund()

Tier hy

\ 4

new Husky ()

23

Objekt vs Referenz

Tier

Hund

Husky

Die Referenzen in

den Variablen

verandern sich!

Tier hd

Tier hd2

Tier hy

Tier hd = new Hund();

Tier hd2 = new Hund();
hd = hd2;

Tier hy = new Husky();

hd2 = hy;

new Hund()

new Hund()

\ 4

new Husky()

24

Objekt vs Referenz

Wie unterscheiden wir zwischen:

Tier
« Typ der Variable
 Typ des Objekts auf welches die Referenz in der
Variable zeigt?
Hund

Tier hd = new Husky()

Husky

Objekt vs Referenz

Wie unterscheiden wir zwischen:

Tier
« Typ der Variable
. auf welches die Referenz in der
Variable zeigt?
Hund
Tier hd = new ();
hd = new ();
Husky
hd = new (); .

Objekt vs Referenz

Wie unterscheiden wir zwischen:

Tier
« Typ der Variable (Statischer Typ)
 Typ des Objekts auf welches die Referenz in der
Variable zeigt?
Hund

Tier hd = new Husky()

Husky

27

Objekt vs Referenz

Wie unterscheiden wir zwischen:

Tier
« Typ der Variable (Statischer Typ)
 Typ des Objekts auf welches die Referenz in der
Variable zeigt?
Hund

Tier hd = new ()

Husky

28

Misconception: Objekte

Hund

@ @ -

Ein Objekt der Subklasse
Ist immer auch vom Typ
der Superklasse.

29

Misconception: Objekte

30

Was wirklich passiert

Hund

@ @ -

Eine Variable vom Typ der
Superklasse kann immer
eine Referenz auf ein
Objekt der Subklasse
enthalten.

Tier hd = new Husky()

31

Was wirklich passiert

Hund

@ @ -

Husky

ier()

32

Verdeutlicht — Was fur Typen akzeptiert eine Variable?

@ Statischer Typ

33

Verdeutlicht — Was fur Typen akzeptiert eine Variable?

Funktionieren diese Zuweisungen?

Tier hd = new ()

Tier k1 = new ()
Katze Hund

Tier t1 = new ()

N

Lowe Tiger Husky Statischer Typ

Verdeutlicht — Was fur Typen akzeptiert eine Variable?

@ Statischer Typ

35

Verdeutlicht — Was fur Typen akzeptiert eine Variable?

Lowe

Tiger

Hund

Husky

Funktionieren diese Zuweisungen?

Katze k1l = new ()
Tier tl = new ()
Katze k3 = t1

Statischer Typ

X

36

Verdeutlicht — Was fur Typen akzeptiert eine Variable?

Warum ist das problematisch?

Tier t1l = new

9

Katze k3 = t1

Hund

Was sieht der Compiler?

Katze =

Lowe Tiger Husky Statischer Typ

X

37

Verdeutlicht — Was fur Typen akzeptiert eine Variable?
Warum ist das problematisch?

Tier t1 = new ()

Katze k3 = t1 x

Was sieht der Compiler? ,4

Katze =

Die Zuweisung ist unsicher, da der Compiler keine Garantie hat, dass
der dynamische Typ von t1 mit dem Typ Katze kompatibel ist.
Intuitiv: Nicht jedes Tier ist eine Katze.

Verdeutlicht — Was fur Typen akzeptiert eine Variable?
Warum ist das problematisch?

Tier t1 = new ()

Katze k3 = t1 x

Was sieht der Compiler? ,4

Katze =

Aber wir probieren doch nur einen Tiger (subklasse der Katze) in k3 zu
speichern...

Wir mussen dem Compiler garantieren konnen, dass er hier immer
eine Subklasse von Katze bekommt, damit die Zuweisung legal ist.

Casting

Casting

Hund

@ @ -

Hund hil;

Hund hl

41

Casting

Hund hil;

Tier h2 = new Hund();

Tier h2

Hund hl new Hund()

42

Casting e
un ;

Tier h2 = new Hund();

Tier h2

hl = h2;

Hund hl new Hund()

43

Casting

Tier h2

Hund hl;

Tier h2

new Hund();

Hund hil

hl = hz;\

new Hund()

44

Casting

Hund hl;

Tier h2 Tier h2 = new Hund();

hl = hz,\

Hund hil new Hund()

java: incompatible types: Tier cannot be
converted to Hund

nsky | Wieso geht das nicht?

45

Casting

Tier

Hund

Husky

Tier h2

Hund h1l

new Hund()

Hund h1l;

Tier h2 = new Hund();

hl = hz;\

Wieso geht das nicht?

Von wo wissen wir, dass h2 eine Referenz
auf ein Objekt vom Typ Hund enthalt?

Wir kennen den dynamischen Typ...

Casting

Tier

Hund

Husky

Tier h2

\

?

void methodel(Tier h2) {

Hund hl;

hl = hz;\

}

Hund h1l

new Hund()

Hier kennen wir den dynamischen Typ nicht...

47

Casting

Tier

Hund

Husky

Tier h2

void methodel(Tier h2) {

Hund hl;

hl = hz;\
}

Hund h1l

new Hund()

Wenn wir methodel nur aufrufen, wenn h2
eine Referenz auf ein Objekt vom Typ Hund
enthalt, dann wirde eigentlich h1 = h2 immer
gehen!

48

Casting

Tier

Hund

Husky

Tier h2

void methodel(Tier h2) {
Hund hl;

hl = (Hund) h2;
}

Hund h1l

new Hund()

Wenn wir methodel nur aufrufen, wenn h2
eine Referenz auf ein Objekt vom Typ Hund
enthalt, dann wirde eigentlich h1 = h2 immer
gehen!

Ein Cast ist ein Versprechen an den Compiler, dass
dies der Fall ist.

49

Casting

Tier

HUD

A

Husky

Tier h2

Tier t

Hund h1l

new Hund()

void methodel(Tier h2) {
Hund hl;
hl = (Hund) h2;

}

void methode2() {
Tier t = new Hund();
methodel(t);

Geht das?

Die Einschrankung auf einen Typen weiter unten im
Baum nennt man einen Downcast.

Casting

void methodel(Tier h2) {
Hund hl;

Tier Tier h2 hl = (Hund) h2;
Y Tier t » new Tier() }
void methode2() {
Hund T Tier t = new Tier();

methodel(t);

sy Geht das?

Casting

Tier

Hund

Husky

void methodel(Tier h2) {

_ Hund hl;
Tier h2 (Hund) h2: X
Tier t » new Tier() }
void methode2() {
Tier t = new Tier();
Hund hl

methodel(t);

Geht das? X

Exception in thread "main" java.lang.ClassCastException: class
Tier cannot be cast to class Hund

Casting: Laufzeitfehler vs Compiler Fehler

Tier Hund h = new Tier(); X

Exception in thread "main" java.lang.Error: Unresolved
compilation problem:
Type mismatch: cannot convert from Tier to Hund

Hund

Compiler-Fehler: Die Typen sind nie kompatibel.

Husky

Casting: Laufzeitfehler vs Compiler Fehler

Tier Tier t
Hund h

new Tier(); X
(Hund) t;

Exception in thread "main" java.lang.ClassCastException:
class Tier cannot be cast to class Hund

Hund
Laufzeitfehler: Die Typen sind zwar nie
kompatibel, aber das Versprechen (der Cast) an
den Compiler lasst das Programm kompilieren.
Husky

« Beim Ausfuhren gibt es einen Laufzeitfehler.

Casting: Laufzeitfehler vs Compiler Fehler

Tier k
Tier h

h = k;

@ @ Geht das?

new Katze();
new Hund();

Casting: Laufzeitfehler vs Compiler Fehler

Tier k = new Katze();
Hund h = new Hund();
h = k;

Geht das? X

Exception in thread "main" java.lang.Error: Unresolved
compilation problem:
Type mismatch: cannot convert from Tier to Hund

Attributwahl

Attribute:

| Regel: Attribute werden anhand
Tier . .
int x =1 vom statischen Typ ausgewahlt.

Hund
intx =2

Husky

intx=3

Attribute:

Tier

int x =1
Hund
intx =2

Husky

intx=3

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Tier t = new Tier();

System.out.println(t.x);

59

Attribute:

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Tier t = new Tier();

_Hund

intx =2 System.out.println(t.x);
Resultat: 1

Husky

intx=3

Attribute:

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Tier t = new Hund();

_Hund

intx =2 System.out.println(t.x);
Resultat: 1

Husky

intx=3

Attribute:

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Tier t = new Husky();

_Hund

intx =2 System.out.println(t.x);
Resultat: 1

Husky

intx=3

Attribute:

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Husky t = new Husky();

_Hund
intx =2 System.out.println(t.x);

Husky

intx=3

Attribute:

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Husky t = new Husky();

_Hund

intx =2 System.out.println(t.x);
Resultat: 3

Husky

intx=3

Attribute:

Tier

int x =1

Hund

intx =2
@

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Husky t = new Husky();

System.out.println(t.x);

65

Attribute:

Hund

intx =2

Husky

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Husky t = new Husky();

System.out.println(t.x);

Resultat: 2

Einer Klasse stehen grundatzlich alle nicht private Variablen
der Superklasse zur Verfugung. Wird die Variable explizit
deklariert, wird die vererbte Variable “verdeckt’ und ist nicht
mehr zuganglich.

66

Attribute:

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Husky t = new Husky();

Hund

intx =2 System.out.println(((Hund)t).x);
Resultat: 2

Husky

intx=3

Attribute:

Regel: Attribute werden an Hand
vom statischen Typ ausgewahilt.

Husky t = new Husky();

Hund
ntx =2 System.out.println(((Hund)t).x);
Resultat: 2
Durch den Cast sehen wir: Das neu definieren von x hat
Husky keine Auswirkung auf x der Superklasse.

intx=3

Attribute:

Hund

intx =2

Husky

intx=3

Husky t = new Husky();

System.out.println(((Hund)t).x);

Variable mit statischem Typ Hund erstellt.

[Hier wird implizit eine neue, temporare

Husky t = new Husky();

Hund casted t = (Hund) t;

System.out.println(casted t.x);

69

Methodenwahl

Methoden:

method1() {
return x;
}
method1() {
Hund return x;
intx=2 / }
method1() {
Husky return x;

intx=3 }

Regel: Methoden* werden anhand
vom Typ
ausgewabhlt.

* ausser private, static und final Methoden (hier statischer Typ)

Tier t = new ();

System.out.println(t.methodl());

Resultat: 3

Methoden:

method1() {
return x;
}
method1() {
Hund return x;
intx=2 / }
method1() {
Husky return x;

intx=3 }

Regel: Methoden™ werden an
Hand vom Typ
ausgewahlt

* ausser private, static und final Methoden (hier statischer Typ)

Hund t = new ();

System.out.println(t.methodl());

Resultat: 3

Methoden:

method1() {
return x;
}
method1() {
Hund return x;
intx=2 / }
method1() {
Husky return x;

intx=3 }

Regel: Methoden™ werden an
Hand vom Typ
ausgewahlt

* ausser private, static und final Methoden (hier statischer Typ)

Hund t = new ();

System.out.println(t.methodl());

Resultat: 2

Methoden:

Regel: Methoden™ werden an
e
rewnx | Hand vom Typ
ausgewabhilt.

* ausser private, static und final Methoden (hier statischer Typ)

Hund Tier t = new ();

intx =2

System.out.println(t.methodl());

Resultat: 1 ? method1l existiert in der Husky Klasse nicht.
" | Deshalb gehen wir durch alle Superklassen

Husky durch, bis wir eine solche Methode finden.

intx=3

Methoden:

method1() {
return x;

}

Hund

intx =2

Husky

intx=3

Regel: Methoden™ werden an

Hand vom

Typ

ausgewabhlt.

* ausser private, static und final Methoden (hier statischer Typ)

Tier t =

();

System.out.println(t.method1());

Resultat: 1

methodl existiert in der Husky Klasse nicht.
Deshalb gehen wir durch alle Superklassen
durch, bis wir eine solche Methode finden.

Methoden:

method1() {
return x;

}

Hund

intx =2

Husky

intx=3

Regel: Methoden™ werden an

Hand vom

Typ

ausgewabhlt.

* ausser private, static und final Methoden (hier statischer Typ)

Tier t =

();

System.out.println(t.method1());

Resultat: 1

methodl existiert in der Husky Klasse nicht.
Deshalb gehen wir durch alle Superklassen
durch, bis wir eine solche Methode finden.

Methoden:
I Regel: Methoden* werden an

eunx | Hand vom Typ
ausgewabhlt.

* ausser private, static und final Methoden (hier statischer Typ)

}

method1l existiert in der Husky Klasse nicht. Deshalb gehen wir durch
Hund alle Superklassen durch, bis wir eine solche Methode finden.

intx =2

Das Attribut x wird weiterhin statisch ausgewahlt.

» Beim Kompilieren wird bestimmt, dass falls method1 in der Klasse
Tier aufgerufen wird, dass wir immer das Attribut x aus der Klasse

Husky Tier wahlen.
intx=3

Methoden:

Regel: Methoden™ werden an
e
 rewnx | Hand vom Typ
ausgewabhilt.

* ausser private, static und final Methoden (hier statischer Typ)

method1() {

Hund return x;
intx=2 / }

Tier t = new ();

System.out.println(t.methodl());

Resultat: 2
Husky

intx=3

Methoden:

method1() {
return x;
}
method1() {
Hund return x;
intx=2 / }
method1() {
Husky return x;

intx=3 }

Regel: Methoden™ werden an
Hand vom Typ
ausgewabhlt.

* ausser private, static und final Methoden (hier statischer Typ)

Tier t = new ();

System.out.println(t.methodl());

Resultat: 3

Methoden:
. Regel: Methoden* werden an

} return X; Hand Vom Typ
ausgewabhilt.

* ausser private, static und final Methoden (hier statischer Typ)

method1() {

Hund return x;
intx=2 / }

Tier t = new ();

System.out.println(t.methodl());

method1() { Resultat: 2

Husky return x;
} \ Husky hat selbst kein Attribut x. Beim Kompilieren wird bestimmt,

dass falls method1 in der Klasse Husky aufgerufen wird, dass
immer das Attribut x aus der Superklasse gewahlt wird.

this und super

Keywords bei Objekten

 new MyClass(..)

= Ruft einen Konstruktor von MyClass mit der entsprechenden
Argumentenliste auf

= super(..)

= Ruft einen Konstruktor der Superklasse mit der entsprechenden
Argumentenliste auf

Keywords bei Objekten

= this ist eine Referenz auf das Objekt, aus dem wir gerade arbeiten und kann auch ganz
normal als Objektreferenz behandelt werden

= this(..)
= Ruft den passenden Konstruktor auf
- this.field

= Gibt das angesprochene Objektattribut
= this.someMethod()

= Ruft die angesprochene Methode auf
= otherMethod(this, 7)

= Ubergibt die Referenz auf das aktuelle Objekt

Loop-Invariante

int compute(int i)

(k '=9) {

n += k % 10;

k =k / 10;

return n;

Loop-Invariante vorgehen:

Code anschauen: was passiert?

85

int compute(int i)

(k '=9) {

n += k % 10;

k =k / 10;

return n;

Loop-Invariante vorgehen:

Code anschauen: was passiert?
Initialisierung

86

int compute(int i) {

Loop-Invariante vorgehen:

int n; * Code anschauen: was passiert?
int k; « Initialisierung
0= e « Bis k==0st, wird k in jeder Iteration durch 10
K= i; dividiert
(k 1= 0) {

n += k % 10;

k =k / 10;
}

return n;

compute(int i) { _
Loop-Invariante vorgehen:

* Code anschauen: was passiert?
« Initialisierung

Bsp:
k=1234

« Bis k==0st, wird k in jeder Iteration durch 10
dividiert

k/10=123

(k '=9) {
n += k % 10;

k =k / 10;

return n;

88

int compute(int i) {

int n;
int k;
i = Bsp:
k = i k=1234
k/10=123
(k 1= 0) {
n+= k % 10;
k = k / 10;
}

return n;

Loop-Invariante vorgehen:

* Code anschauen: was passiert?
« Initialisierung

« Bis k==0st, wird k in jeder Iteration durch 10
dividiert — immer die letzte Ziffer wird
“abgeschnitten”

int compute(int i) {

int n;

int k;

n = 0;

k = i;

(k '=9) {

n += k % 10;
k =k / 10;

}

return n;

Loop-Invariante vorgehen:

* Code anschauen: was passiert?
« Initialisierung

« Bis k==0st, wird k in jeder Iteration durch 10
dividiert — immer die letzte Ziffer wird
“abgeschnitten”

In jeder Iteration wird k % 10 zu n addiert

int compute(int i) {

Loop-Invariante vorgehen:

%”t ns * Code anschauen: was passiert?
AT S5 . Initialisierung
0= e « Bis k==0st, wird k in jeder Iteration durch 10
k = i Bsp: dividiert — immer die letzte Ziffer wird
k = 1234 “abgeschnitten”
K% 10 = 4 In jeder Iteration wird k % 10 zu n addiert
(k '=9) {
n += k % 10;
k = k / 10;
}

return n;

int compute(int i) {

Loop-Invariante vorgehen:

int n;
* Code anschauen: was passiert?
int k;
o « Initialisierung
1S G « Bis k==0st, wird k in jeder Iteration durch 10
o= s Bsp: dividiert — immer die letzte Ziffer wird
k =1234 “abgeschnitten”
k% 10 =4 In jeder Iteration wird k % 10 zu n addiert —
immer die letzte Ziffer wird dazu addiert
(k 1= 0) {
n += k % 10;
k = k / 10;
}

return n;

int compute(int i) {

Loop-Invariante vorgehen:

int n;
* Code anschauen: was passiert?
int k; PR
Initialisierung
n = 0;

Bis k == 0 ist, wird Kk in jeder Iteration durch 10
k = 1; dividiert — immer die letzte Ziffer wird
“abgeschnitten”

In jeder Iteration wird k % 10 zu n addiert —
immer die letzte Ziffer wird dazu addiert

(k '=0) { . .)
=> n == alle Ziffern von i zusammen addiert
n += k % 10;
k = k / 10;

return n;

int compute(int i) {

Loop-Invariante vorgehen:

int n;
* Code anschauen: was passiert?
int k; PR
Initialisierung
n = 0;

Bis k == 0 ist, wird Kk in jeder Iteration durch 10
k = 1; dividiert — immer die letzte Ziffer wird
“abgeschnitten”

In jeder Iteration wird k % 10 zu n addiert —
immer die letzte Ziffer wird dazu addiert

(k '=0) { . .)
=> n == alle Ziffern von i zusammen addiert.
n += k % 10;)) .
’ das ist die Quersumme von i
k = k / 10;

return n;

int compute(int i) {

Loop-Invariante vorgehen:

int n;
* Code anschauen: was passiert?
int k; PR
Initialisierung
n = 0;

Bis k == 0 ist, wird Kk in jeder Iteration durch 10
k = 1; dividiert — immer die letzte Ziffer wird
“abgeschnitten”

In jeder Iteration wird k % 10 zu n addiert —
immer die letzte Ziffer wird dazu addiert

(k '=0) { . .)
=> n == alle Ziffern von i zusammen addiert.
n += k % 10; . \
’ das ist die Quersumme von |
k = k / 10;

 Postcondition anschauen

return n;

int compute(int i) {

Loop-Invariante vorgehen:

int n;
* Code anschauen: was passiert?
int k; PR
Initialisierung
n = 0;

Bis k == 0 ist, wird Kk in jeder Iteration durch 10
k = 1; dividiert — immer die letzte Ziffer wird
“abgeschnitten”

In jeder Iteration wird k % 10 zu n addiert —
immer die letzte Ziffer wird dazu addiert

=B => n == alle Ziffern von i zusammen addiert.
LR das ist die Quersumme von |
K=k /16; « Postcondition anschauen
} « Unsere Vermutung war also richtig: die

Quersumme von i wird berechnet

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
. Am Schluss wollen wir auf die Postcondition
s (S5 kommen. Aber quersumme(i) == n stimmt am
n=e; Anfang im Allgemeinen definitiv nicht
K = i quersumme(i) =0
(k '=9) {

n += k % 10;

k =k / 10;
}

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
* Am Schluss wollen wir auf die Postcondition
AT S5 kommen. Aber quersumme(i) == n stimmt am
n=e; Anfang im Allgemeinen definitiv nicht
Kk = i; quersumme(i) =0
k und n werden wahrend dem Loop verandert, also
mussen diese irgendwie in der Invariante
vorkommen
(k 1= 0) {
n += k % 10;
k = k / 10;
}

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
. Am Schluss wollen wir auf die Postcondition
AT S5 kommen. Aber quersumme(i) == n stimmt am
n = 0; Anfang im Allgemeinen definitiv nicht
Kk = i; quersumme(i) =0
k und n werden wahrend dem Loop verandert, also
mussen diese irgendwie in der Invariante
vorkommen
(k 1=0) { Versuch 1: quersumme(k) ==
n += k % 10;
k = k / 10;
}

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
. Am Schluss wollen wir auf die Postcondition
AT S5 kommen. Aber quersumme(i) == n stimmt am
n = 0; Anfang im Allgemeinen definitiv nicht
Kk = i; quersumme(i) =0
k und n werden wahrend dem Loop verandert, also
mussen diese irgendwie in der Invariante
vorkommen
(k 1=0) { Versuch 1: quersumme(k) ==
n += k % 10; Prifen: é
k = k / 10; « Anfangs: quersumme(i) ==
}

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
. Am Schluss wollen wir auf die Postcondition
AT S5 kommen. Aber quersumme(i) == n stimmt am
n = 0; Anfang im Allgemeinen definitiv nicht
Kk = i; quersumme(i) =0
k und n werden wahrend dem Loop verandert, also
mussen diese irgendwie in der Invariante
vorkommen
(k 1=0) { Versuch 1: quersumme(k) ==
n += k % 10; Priifen: é
k = k / 10; « Anfangs: quersumme(i) ==
} « Wir haben links also quersumme(i) “zu viel”

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
. Am Schluss wollen wir auf die Postcondition
AT S5 kommen. Aber quersumme(i) == n stimmt am
n = 0; Anfang im Allgemeinen definitiv nicht
Kk = i; quersumme(i) =0
k und n werden wahrend dem Loop verandert, also
mussen diese irgendwie in der Invariante
vorkommen
(k 1=0) { Versuch 1: quersumme(k) ==
n += k % 10; Priifen: é
k = k / 10; « Anfangs: quersumme(i) ==
} « Wir haben links also quersumme(i) “zu viel”

Versuch 2: quersumme(k) - quersumme(i) == n

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
. Am Schluss wollen wir auf die Postcondition
AT S5 kommen. Aber quersumme(i) == n stimmt am
n = 0; Anfang im Allgemeinen definitiv nicht
Kk = i; quersumme(i) =0
k und n werden wahrend dem Loop verandert, also
mussen diese irgendwie in der Invariante
vorkommen
(k 1=0) { Versuch 1: quersumme(k) == n
n += k % 10; Priifen: é
k = k / 10; « Anfangs: quersumme(i) ==
} « Wir haben links also quersumme(i) “zu viel”
Versuch 2: quersumme(k) - quersumme(i) == n
Prufen:
return n; . Anfangs: quersumme(i) — quersumme(i) ==

103

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
. Am Schluss wollen wir auf die Postcondition
AT S5 kommen. Aber quersumme(i) == n stimmt am
n = 0; Anfang im Allgemeinen definitiv nicht
Kk = i; quersumme(i) =0
k und n werden wahrend dem Loop verandert, also
mussen diese irgendwie in der Invariante
vorkommen
(k 1=0) { Versuch 1: quersumme(k) == n
n += k % 10; Priifen: é
k = k / 10; « Anfangs: quersumme(i) ==
} « Wir haben links also quersumme(i) “zu viel”
Versuch 2: quersumme(k) - quersumme(i) == n
Prufen:
return n; . Anfangs: quersumme(i) — quersumme(i) ==

« Ende: quersumme(0) — quersumme(i) == quersumme(i)
104

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;
' Am Schluss wollen wir auf die Postcondition
AT S5 kommen. Aber quersumme(i) == n stimmt am
n = 0; Anfang im Allgemeinen definitiv nicht
Kk = i; quersumme(i) =0
k und n werden wahrend dem Loop verandert, also
mussen diese irgendwie in der Invariante
vorkommen
(k 1=0) { Versuch 1: quersumme(k) == n
n += k % 10; Priifen: é
k = k / 10; « Anfangs: quersumme(i) ==
} « Wir haben links also quersumme(i) “zu viel”
Versuch 2: quersumme(k) - quersumme(i) == n
Prufen:
return n; . Anfangs: quersumme(i) — quersumme(i) ==

« Ende: quersumme(0) I quersumme(i) == quersumme(i)
105

« Das Vorzeichen stimmt nicht

int compute(int i)

Loop-Invariante vorgehen (Fortsetzung):

* Versuch 3: quersumme(i) — quersumme(k) == n

(k '=9) {

n += k % 10;

k =k / 10;

return n;

106

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

%“t n; « Versuch 3: quersumme(i) — quersumme(k) ==
int k; « Prifen:
n = e; « Anfangs: quersumme(i) — quersumme(i) ==
k = i;
(k '=0) {

n += k % 10;

k = k / 10;
b

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

%“t n; « Versuch 3: quersumme(i) — quersumme(k) == n
it ks « Prifen:
n = 0; Anfangs: quersumme(i) — quersumme(i) ==
k = 1; Nach jeder Iteration:
quersumme(i) — quersumme(k/M0) == n + k%10
“k ohne letzte Ziffer” "letzte Ziffer von k”
(k 1=0) {
n += k % 10;
k =k / 10;
}

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

%“t n; « Versuch 3: quersumme(i) — quersumme(k) == n
it ks « Prifen:
n = 0; Anfangs: quersumme(i) — quersumme(i) ==
k = 1; Nach jeder Iteration:
quersumme(i) — quersumme(KMA0) == n + k%10
“k ohne letzte Ziffer” "letzte Ziffer von k”
(k 1= 0) { Ende: quersumme(i) — quersumme(0) == quersumme(i)
n += k % 10; * Korrekt !
k =k / 10;
}

return n;

int compute(int i)

Loop-Invariante vorgehen (Fortsetzung):

Inv: quersumme(i) — quersumme(k) ==n

» Es fehlt noch etwas!

(k '=9) {

n += k % 10;

k =k / 10;

return n;

110

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;

Inv: quersumme(i) — quersumme(k) ==

int k;

n = 0;

Es fehlt noch etwas!

k = i; . .
Der Parameter von quersumme() muss positiv sein:
i>=0&&k>=0
(ein Hint, um darauf zu kommen, kann uns die

(k 1= 0) { Precondition geben)
n += k % 10;
k =k / 10;
}

return n;

int compute(int i) {

Loop-Invariante vorgehen (Fortsetzung):

int n;

Inv: quersumme(i) — quersumme(k) ==n

int k;

n = 0;

Es fehlt noch etwas!

k = i; vy .
Der Parameter von quersumme muss positiv sein:
i>=0&&k>=0
(ein Hint, um darauf zu kommen, kann uns die

(k '=0) { Precondition geben)
n += k % 10;
k =k / 10; * Fertige Invariante:
} quersumme(i) — quersumme(k) == n && i >=0&& k>=0

return n;

Problem Solving: Klassen

Hogwarts (2020 W11)

In dieser Aufgabe implementieren Sie das Punktesystem von
Hogwarts, bei welchem Studenten eines Hauses Punkte verliehen
oder abgezogen bekommen konnen und dadurch der kumulative
Punktestand ihres Hauses sich verandert. Wir verwenden drei
Klassen, School, House, und Student, fur die Schule, Hauser, und

Studenten

Die Klassen konnen folgendermassen verwendet werden:

School hogwarts = new School();

// Haeuser werden erstellt (Anzahl Haeuser und Namen sind nicht eingeschraenkt).

House hufflepuff = hogwarts.createHouse("Hufflepuff");
House ravenclaw = hogwarts.createHouse("Ravenclaw");

// Studenten haben Vor- und Nachnamen.

Student hannah new Student ("Hannah", "Abbott");
Student newton = new Student ("Newton", "Scamander");
Student luna new Student ("Luna", "Lovegood") ;
Student filius = new Student ("Filius", "Flitwick");

// Studenten werden den Haeusern zugeordnet.
hufflepuff.assign(hannah);
hufflepuff.assign(newton);
ravenclaw.assign(luna);
ravenclaw.assign(filius);

// Punkte werden an Studenten vergeben. Punkte koennen auch negativ sein.

hannah.givePoints(10) ;
newton.givePoints(-5);
luna.givePoints(8) ;

// Informationen zu der Summe an Punkten und dem aktuellen Siegerhaus
// koennen immer abgefragt werden.

System.out.println("Siegerhaus: " + hogwarts.winner().name());
System.out.println("Siegerpunkte: " + hogwarts.winmer().points());
System.out.println("Hogwarts, Punkte Insgesamt: " + hogwarts.points());

115

1. Implementieren Sie den School-Konstruktor und die Methode createHouse(String name),
welche als Parameter den gewunschten Namen des Hauses nimmt und ein House Objekt
zuruckgibt. Der Name eines Hauses darf nicht null sein oder bereits fur die Schule vorhanden
sein. Die Methode soll in diesen Fallen eine IllegalArgumentException werfen. Alle anderen
Namen sind erlaubt. Implementieren Sie zusatzlich die Methode name() der Klasse House,
welche den Namen des Hauses als String zuruckgibt.

2. Implementieren Sie den Konstruktor von Student, welcher zwei Strings, den Vor- und
Nachnamen (in dieser Reihenfolge) nimmt. Sie durfen annehmen, dass es jeden Namen (Vor-
und Nachname zusammen) nur einmal gibt. Vor- und Nachnamen sollen uber die Methode
firstName() beziehungsweise lastName() erhalten werden konnen. Implementieren Sie
zusatzlich die Methode assign(Student student) der Klasse House, welche einen Studenten
als Argument nimmt und ihn in dieses Haus einschreibt. Bei einem null Argument oder falls
der Student bereits bei einem Haus der gleichen Schule eingeschrieben ist, dann soll die
Methode eine IllegalArgumentException werfen.

Als letztes implementieren Sie das Punktesystem. Implementieren Sie dafur vier Methoden:
Die Method points() von House gibt die Punkte eines Hauses zuruck. Jedes Haus beginnt
mit einem Punktestand von 0, wenn es erstellt wird. Dieser Punktestand kann sich dann
durch die Leistungen der Studenten verandern. Die Methode givePoints(int points) von
Student nimmt eine positive oder negative Anzahl Punkte, welche dem Studenten verliehen
werden. Erhaltene Punkte zahlen nur, wenn der Student einem Haus bereits zugewiesen
wurde. Die erhaltenen Punkte werden dann den Hausern zugeschrieben, welchen der
Student zugewiesen ist. Dabei konnen die Punkte eines Hauses nicht kleiner als 0 werden.
Auch wenn einem Studenten mehr Punkte abgezogen werden, geht der Punktestand eines
Hauses nur auf 0. Zum Beispiel, wenn Hufflepuff in der Summe 5 Punkte hat und Hannah -
10 Punkte verliehen werden, dann werden nur -5 Punkte tatsachlich fur Hufflepuff
verrechnet, der Rest wird ignoriert. Zusatzlich implementieren Sie die Methode winner() von
School, welche das Haus mit den meisten Punkten zuruckgibt. Falls mehrere Hauser die
gleiche Punktzahl haben, dann kann ein beliebiges dieser Hauser zuruckgegeben werden.
Falls es kein Haus gibt, dann soll die Methode eine lllegalArgumentException werfen. Und
implementieren Sie die Methode points() von School, welche die Summe der Punktestande
der Hauser zuruckgibt.

Code-Skelett:

School
Fields:

Konstruktor:

Methods:

House createHouse(String name)
House winner()
int points()

House
Fields:

Konstruktor:

Methods:

String name()

int points()

void assign(Student student)

Student
Fields:

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points)

1. Implementieren Sie den School-Konstruktor und die Methode createHouse(String name),
welche als Parameter den gewunschten Namen des Hauses nimmt und ein House Objekt
zuruckgibt. Der Name eines Hauses darf nicht null sein oder bereits fur die Schule vorhanden
sein. Die Methode soll in diesen Fallen eine lllegalArgumentException werfen. Alle anderen
Namen sind erlaubt. Implementieren Sie zusatzlich die Methode name() der Klasse House,
welche den Namen des Hauses als String zuruckgibt.

School House Student
Fields: Fields: Fields:

Konstruktor: Konstruktor: Konstruktor:
- Student(String firstName, String lastName)

Methods: Methods: Methods:
House createHouse(String name) String name() String firstName()
House winner() int points() String lastName()

int points() void assign(Student student) void givePoints(int points)

1. Implementieren Sie den School-Konstruktor und die Methode createHouse(String name),
welche als Parameter den gewunschten Namen des Hauses nimmt und ein House Objekt
zuruckgibt. Der Name eines Hauses darf nicht null sein oder bereits fur die Schule vorhanden
sein. Die Methode soll in diesen Fallen eine lllegalArgumentException werfen. Alle anderen
Namen sind erlaubt. Implementieren Sie zusatzlich die Methode name() der Klasse House,
welche den Namen des Hauses als String zuruckgibt.

School House Student

Fields: Fields: Fields:

List<House> houses String name -

Konstruktor: Konstruktor: Konstruktor:

School() House(String name) Student(String firstName, String lastName)
Methods: Methods: Methods:

House createHouse(String name){ String name() String firstName()

Test name != nullund name fur Schule int points() String lastName()

unique void assign(Student student) void givePoints(int points)

}

House winner()
int points()

2. Implementieren Sie den Konstruktor von Student, welcher zwei Strings, den Vor- und
Nachnamen (in dieser Reihenfolge) nimmt. Sie durfen annehmen, dass es jeden Namen (Vor-
und Nachname zusammen) nur einmal gibt. Vor- und Nachnamen sollen uber die Methode
firstName() beziehungsweise lastName() erhalten werden konnen. Implementieren Sie
zusatzlich die Methode assign(Student student) der Klasse House, welche einen Studenten
als Argsument nimmt und ihn in dieses Haus einschreibt. Bei einem null Argument oder falls
der Student bereits bei einem Haus der gleichen Schule eingeschrieben ist, dann soll die

Methode eine IllegalArgumentException werfen.

School House

Fields: Fields:

List<House> houses String name

Konstruktor: Konstruktor:

School() House(String name)
Methods: Methods:

House createHouse(String name){ String name()

Test name != null und name fir Schule int points()

unique void assign(Student student)

}

House winner()
int points()

Student
Fields:

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points)

2. Implementieren Sie den Konstruktor von Student, welcher zwei Strings, den Vor- und
Nachnamen (in dieser Reihenfolge) nimmt. Sie durfen annehmen, dass es jeden Namen (Vor-
und Nachname zusammen) nur einmal gibt. Vor- und Nachnamen sollen uber die Methode
firstName() beziehungsweise lastName() erhalten werden konnen. Implementieren Sie
zusatzlich die Methode assign(Student student) der Klasse House, welche einen Studenten
als Argsument nimmt und ihn in dieses Haus einschreibt. Bei einem null Argument oder falls
der Student bereits bei einem Haus der gleichen Schule eingeschrieben ist, dann soll die

Methode eine IllegalArgumentException werfen.

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name flir Schule
unique

}

House winner()

int points()

House
Fields:

String name
School school
List<Student> students

Konstruktor:
House(String name, School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht schon
in anderem Haus derselben Schule

}

Student
Fields:

String firstName, lastName

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points)

Als letztes implementieren Sie das Punktesystem. Implementieren Sie dafur vier Methoden:
Die Method points() von House gibt die Punkte eines Hauses zurtck. Jedes Haus beginnt mit
einem Punktestand von 0, wenn es erstellt wird.

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name flr Schule
unique

}

House winner()

int points()

House
Fields:

String name
School school
List<Student> students

Konstruktor:
House(String name, School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht schon
in anderem Haus derselben Schule

}

Student
Fields:

String firstName, lastName

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points)

Als letztes implementieren Sie das Punktesystem. Implementieren Sie dafur vier Methoden:
Die Method points() von House gibt die Punkte eines Hauses zurtck. Jedes Haus beginnt mit
einem Punktestand von 0, wenn es erstellt wird.

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name flr Schule
unique

}

House winner()

int points()

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name, School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht schon
in anderem Haus derselben Schule

}

Student
Fields:

String firstName, lastName

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points)

Dieser Punktestand kann sich dann durch die Leistungen der Studenten verandern. Die
Methode givePoints(int points) von Student nimmt eine positive oder negative Anzahl Punkte,
welche dem Studenten verliehen werden. Erhaltene Punkte zahlen nur, wenn der Student
einem Haus bereits zugewiesen wurde. Die erhaltenen Punkte werden dann den Hausern
zugeschrieben, welchen der Student zugewiesen ist. Dabei kdnnen die Punkte eines Hauses

nicht kleiner als O werden.

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name flr Schule
unique

}

House winner()

int points()

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name, School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht schon
in anderem Haus derselben Schule

}

Student
Fields:

String firstName, lastName

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points)

Dieser Punktestand kann sich dann durch die Leistungen der Studenten verandern. Die
Methode givePoints(int points) von Student nimmt eine positive oder negative Anzahl Punkte,
welche dem Studenten verliehen werden. Erhaltene Punkte zahlen nur, wenn der Student
einem Haus bereits zugewiesen wurde. Die erhaltenen Punkte werden dann den Hausern
zugeschrieben, welchen der Student zugewiesen ist. Dabei kdnnen die Punkte eines Hauses

nicht kleiner als O werden.

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name flr Schule
unique

}

House winner()

int points()

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name, School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht schon
in anderem Haus derselben Schule

}

void updatePoints(int change){

points = max(0, points + change)

}

Student
Fields:

String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points){
Fur jedes House in houses,
House.updatePoinst(points)

}

Zusatzlich implementieren Sie die Methode winner() von School, welche das Haus mit den
meisten Punkten zuruckgibt. Falls mehrere Hauser die gleiche Punktzahl haben, dann kann ein
beliebiges dieser Hauser zuruckgegeben werden. Falls es kein Haus gibt, dann soll die
Methode eine IllegalArgumentException werfen. Und implementieren Sie die Methode points()
von School, welche die Summe der Punktestande der Hauser zuruckgibt.

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name flr Schule
unique

}

House winner()

int points()

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name, School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht schon
in anderem Haus derselben Schule

}

void updatePoints(int change){

points = max(0, points + change)

}

Student
Fields:

String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points){
Fir jedes House in houses,
House.updatePoinst(points)

}

Zusatzlich implementieren Sie die Methode winner() von School, welche das Haus mit den
meisten Punkten zuruckgibt. Falls mehrere Hauser die gleiche Punktzahl haben, dann kann ein
beliebiges dieser Hauser zuruckgegeben werden. Falls es kein Haus gibt, dann soll die
Methode eine IllegalArgumentException werfen. Und implementieren Sie die Methode points()
von School, welche die Summe der Punktestande der Hauser zuruckgibt.

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name flr Schule
unique

}

House winner() {

Test houses not empty

return ein House mit max points

}

int points() {

return Summe der points aller House aus
houses

}

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name, School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht schon
in anderem Haus derselben Schule

}

void updatePoints(int change){

points = max(0, points + change)

}

Student
Fields:

String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points){
Fir jedes House in houses,
House.updatePoinst(points)

}

Jetzt Klassen implementieren

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name fur Schule
unique

}

House winner() {

Test houses not empty

return ein House mit max points

}

int points() {

return Summe der points aller House aus
houses

}

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht schon
in anderem Haus derselben Schule

}

void updatePoints(int change){

points = max(0, points + change)

}

Student
Fields:

String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String lastName)

Methods:

String firstName()

String lastName()

void givePoints(int points) {
Fir jedes House in houses,
House.updatePoinst(points)

}

Student
Fields:

String firstName, lastName
List<House> houses

public class Student

_ Konstruktor:

String . . .
Student(String firstName, String

LinkedList House
lastName)

public Student String String
Methods:

public String firstName return null String firstName()
String lastName()

public String lastName return null V(?Id. glvePomts(lr'lt pomts){
Fur jedes House in houses,
House.updatePoinst(points)

public void givePoints int }

130

public class Student

String

LinkedList House

Student
Fields:

String firstName, lastName
List<House> houses

Konstruktor:

Student(String firstName, String
lastName)

public Student String String
this
this
new House
public String firstName return null
public String lastName return null

public void givePoints int

Methods:

String firstName()

String lastName()

void givePoints(int points) {
Fur jedes House in houses,
House.updatePoinst(points)

}

131

public class Student
String
LinkedList House
public Student String
this
this

new

String

House

public String firstName

return

public String lastName

return

public void givePoints int

Student
Fields:

String firstName, lastName
List<House> houses

Konstruktor:

Student(String firstName, String
lastName)

Methods:

String firstName()
String lastName()

void givePoints(int points) {
Fur jedes House in houses,
House.updatePoinst(points)

}

132

public class Student
String
LinkedList House
public Student String
this
this

new

public String firstName

return

public String lastName

return

String

House

Student
Fields:

String firstName, lastName
List<House> houses

Konstruktor:

Student(String firstName, String
lastName)

Methods:

String firstName()
String lastName()

public void givePoints int

for House

void givePoints(int points) {
Fur jedes House in houses,
House.updatePoinst(points)

}

133

public class House

House
Fields:

String
School

LinkedList Student

String name

School school
List<Student> students
int points

int
public String name return null
public int points return @

public void assign Student

Konstruktor:
House(String name , School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht
schon in anderem Haus derselben
Schule

}

void updatePoints(int change){
points = max(0, points + change)

}

134

public class House

String
School

LinkedList Student

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

int
public House School String
this
this
this new Student
this 0
public String name return null
public int points return @

public void assign Student

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht
schon in anderem Haus derselben
Schule

}

void updatePoints(int change){
points = max(0, points + change)

}

135

public class House
String
School
LinkedList Student

int

public House School

this
this
this

this

String

new

Student

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:

String name()
int points()

public String name

public int points

return

return

public void assign Student

void assign(Student student) {

Test student != null und Student nicht
schon in anderem Haus derselben
Schule

}

void updatePoints(int change){
points = max(0, points + change)

}

136

publiicC CiLas5 RoOouse
String
School

LinkedList Student

int

public House School String
public String name return
public int points return

public void assign Student
if null
throw new
for House
for Student
if

throw new

this

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:

String name()
int points()

void assign(Student student) {

Test student != null und Student nicht
schon in anderem Haus derselben
Schule

}

void updatePoints(int change){
points = max(0, points + change)

}

137

public class House
String
School

LinkedList Student

int

public House School String
public String name return
public int points return

public void assign Student

public void updatePoints int

this Math 0 this

House
Fields:

String name

School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:

String name()

int points()

void assign(Student student) {

Test student != null und Student nicht
schon in anderem Haus derselben
Schule

}

void updatePoints(int change){
points = max(0, points + change)

}

138

‘School
Fields:

List<House> houses

public class School Konstruktor:

; : School()

LinkedList House

public School

. Methods:
this new House .

House createHouse(String name){
Test name != null und name fur Schule
unique

public House createHouse String return null }

public House winner return null House winner() {

public int points return Test houses not empty
return ein House mit max points

int points() {
return Summe der points aller House
aus houses

}

139

public class School SChOOl

LinkedList House .
Fields:
List<House> houses

public School

this new House
public House createHouse String KonStrUkt0r°
hool
if null Schoo ()
throw new
Methods:
for House]
» House createHouse(String name){
1 oo
Test name != null und name fur Schule
throw new unique
House winner() {
House new this Test houses not empty
return ein House mit max points
return } .
int points() {
return Summe der points aller House
public House winner return null aus houses
public int points return }

140

public class School
LinkedList House
public School

this new House

public House createHouse String

public House winner
if 0
throw new
House 0
for House

if

return

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name fur Schule
unique

1

House winner() {
Test houses not empty
return ein House mit max points

1

public int points return

int points() {
return Summe der points aller House
aus houses

}

141

public class School

LinkedList House
public School

this new

public House createHouse String

public House winner

House

public int points
int 0

for House

return

School
Fields:

List<House> houses

Konstruktor:
School()

Methods:

House createHouse(String name){
Test name != null und name fur Schule
unique

}

House winner() {

Test houses not empty

return ein House mit max points

1

int points() {
return Summe der points aller House
aus houses

}

142

Scanner

Scanner: Methoden

Scanner

 next(): Wenn ein nachster String existiert im Scanner, dann wird dieser eingelesen und
zurickgegeben. Sonst gibt es eine NoSuchElementException.

« nextInt(): Wenn ein nachster Int existiertim Scanner, dann wird dieser eingelesen und
zurickgegeben. Sonst gibt es eine NoSuchElementException.

* nextBoolean(): Wenn ein nachster Boolean existiert im Scanner, dann wird dieser eingelesen und
zuruckgegeben. Sonst gibt es eine NoSuchElementException.

* nextDouble(): Wenn ein nachster Double existiert im Scanner, dann wird dieser eingelesen und
zuruckgegeben. Sonst gibt es eine NoSuchElementException.

Scanner: Methoden

Scanner

hasNext(): Prift ob esim Scanner einen nachsten String gibt.

hasNextInt(): Prift ob esim Scanner einen nachsten Int gibt.
* hasNextBoolean(): Pruft ob esim Scanner einen nachsten Boolean gibt.

* hasNextDouble(): Pruft ob esim Scanner einen nachsten Double gibt.

Scanner: LOCALE

Scanner

Beim Einlesen von double kommt es zu Problemen...

shell> scanner.nextDouble()

J

| Exception java.util.InputMismatchException

| at Scanner.throwFor (Scanner.java:947)
|
|
|

at Scanner.next (Scanner.java:1602)

at Scanner.nextDouble (Scanner.java:2573)
at (#3:1)

Im Deutschen werden Kommazahlen mit , statt mit . benutzt. Deshalb kann ein Scanner nicht 4.5
einlesen.

Losung: scanner.uselLocale(Locale.US).

Kahoot zu Inheritance

Vorbesprechung

1. Um die Loop-Invariante einfacher schreiben zu kénnen, diirfen Sie min(arr, i) benutzen.
Hier steht min(arr, i) fiir das minimale Element in dem Array arr von Index 0 bis und
mit Index i. Alternativ kinnte man auch formale Notation benutzen, in dem man mit
Quantoren arbeitet. Zum Beispiel, falls m = min(arr, i), dann kénnten Sie dquivalent
folgendes schreiben

Y0 <j <if(arr[j] <m)

AUfgabe 1 . int min(int[] arr) {

// Precondition: arr != null 0 < arr.length
int m = arr[0];

LOOp- int i = 1;
Invarianten

// Loop-Invariante:
while (i < arr.length) {
if (arrf[i] < m) {

m = arr[i];

i++

// Postcondition: m = min(arr, arr.length)
return m;

149

2. String append(String strl, String str2) {
// Precondition: strl != null && str2 != null
String sl = stri;
String s2 = str2;

// Loop-Invariante:
while (!s2.equals("")) {

Loop- T2 - 2 merringD;
Invarianten '

Aufgabe 1:

// Postcondition: s.equals(strl + str2)
return s1;

b

Achtung: Die Bedingung strl !'= null &% str2 !'= null ist wichtig, damit Aufrufe wie
s2.equals(), s2.charAt(0) und s2.substring(1) tiberhaupt moglich sind. Der Aufruf
s2.substring(1) produziert das gleiche Resultat wie s2.substring(1, s2.length()).

150

Aufgabe 2:

Database

In dieser Aufgabe implementieren Sie fiir eine Datenbank von Personengesundheitsdaten das De-
klassifizieren von Eintrdgen (Task a) und das Verlinken von Eintragen (Task b). Alle Unteraufgaben
kénnen separat gelost werden.

Die Datenbank selber ist bereits mit der Klasse Database implementiert. Die Datenbank hilt
eine Liste von Eintrdgen, welche durch die Klasse Iten reprasentiert werden. Die folgenden 4
Paragraphen erkldren alle in der Vorlage gegebenen Klassen im Detail.

Item Die Klasse Item reprisentiert einen Datenbankeintrag mit 4 Attributen: eine ID (int), ein
Alter (int), einen Gesundheitswert (int), und ein Sicherheitslevel, welches durch die Klasse Level
reprasentiert wird. Alter und Gesundheitswert sind immer > (. Die Methoden Item.getID(),
Item.getAge(), Item.getHealth(), Ttem.getLevel() geben jeweils die ID, das Alter, den Ge-
sundheitswert, und das Sicherheitslevel eines Eintrags zurtick. Die Methode Item.setHealth(int
newHealth) setzt den Gesundheitswert auf newHealth. Die anderen Attribute kénnen nicht gedn-
dert werden.

Level Die Klasse Level reprasentiert ein Sicherheitslevel. Ein Sicherheitslevel wird iiber eine
Liste von Integern definiert, welches in einem Attribut der Klasse Level gespeichert wird und von
der Methode Level.getPoints () zurfickgegeben wird. Ein Level A ist verwandt mit einem Level
B, falls die Summe der Werte in A.getPoints() gleich der Summe der Werte in B. getPoints ()
ist. Zum Beispiel ist das Level [1,2,3,4] verwandt mit den Levels [10] und [4, 6] (die Summe ist
iiberall 10), aber nicht mit dem Level [4,5].

151

ItemFactory Die Klasse ItemFactory wird verwendet, um Datenbankeintrige zu erstellen. Die
Methode ItemFactory.createltem(Level level, int id, int age, int health) gibt ein Ex-
emplar der Klasse Item zuriick, deren Attribute mit den Argumenten initialisiert wurden.

Database Die Klasse Database représentiert eine Datenbank und hat folgende vorgegebene
Methoden:

® Database.getItemFactory() gibt ein Exemplar von ItemFactory zuriick. Die ItemFactory
I ist assoziiert mit der Datenbank D, falls I von D.getItemFactory() zuriickgegeben wird.

Aufgabe 2:

* Database.add(Item item) fiigt der Datenbank den Eintrag item hinzu.

D ata b as e ® Database.getItems() gibt die Liste aller Eintrdge zuriick, welcher der Datenbank hinzuge-

fligt wurden. Sie diirfen annehmen, dass fiir eine Datenbank D alle Eintrédge in D. getItems()
eine einzigartige ID haben, tiber D.add hinzugefiigt wurden, iiber D.getItemFactory()
erstellt wurden, und keiner anderen Datenbank hinzugefiigt werden. Ein hinzugefiigter
Eintrag wird nie wieder entfernt.

1. Implementieren Sie die Methode ItemFactory.createDeclass(Level level, int id, int
targetId), die einen Deklassifikationseintrag zurtickgibt. Ein Deklassifikationseintrag ist sel-
ber ein Eintrag, also ein Exemplar der Klasse Item. Ein Deklassifikationseintrag hat damit
auch eine ID, ein Sicherheitslevel, ein Alter, und einen Gesundheitswert, welche von den

152

Aufgabe 2:

Database

entsprechenden getter-Methoden zurtickgegeben werden. ID und Sicherheitslevel eines
Deklassifikationseintrags sind jeweils das id und level Argument des createDeclass Auf-
rufs, mit welchem der Eintrag erstellt wurde. Das Alter und der Gesundheitswert eines
Deklassifikationseintrags sind jeweils das Alter und der Gesundheitswert des Zieleintrags
vom Deklassifikationseintrag. Der Zieleintrag von einem Deklassifikationseintrag D ist der
Eintrag E, so dass

* E.getID() gleich dem Parameter targetId ist, mit welchem D erstellt wurde; und

e E aus der Datenbank ist, mit welcher die ItemFactory assoziiert ist, mit welcher D
erstellt wurde.

Falls es keinen Zieleintrag gibt, wird eine IllegalArgumentException von der Methode
createDeclass geworfen. Beachten Sie, dass Zieleintrdge selber Deklassifikationseintriage
sein konnen. Ein Aufruf der Methode Ttem.setHealth(h) auf einem Deklassifikationsein-
trag hat keinen Effekt; dies wird nicht in den Tests tiberpriift.

Ein Deklassifikationseintrag R erreicht einen Eintrag A, falls entweder A der Zieleintrag von R
ist oder falls der Zieleintrag von R ein Deklassifikationseintrag ist, welcher A erreicht. Die
Methode createDeclass wirft eine I1legalArgumentException, falls der zuriickzugebene
Deklassifikationseintrag R einen Eintrag erreicht, dessen Level verwandt ist mit dem Level
von R. Zur Erinnerung: Der Paragraph iiber die Klasse Level erkldrt, wann zwei Level
verwandt sind.

153

Aufgabe 2:

Database

entsprechenden getter-Methoden zurtickgegeben werden. ID und Sicherheitslevel eines
Deklassifikationseintrags sind jeweils das id und level Argument des createDeclass Auf-
rufs, mit welchem der Eintrag erstellt wurde. Das Alter und der Gesundheitswert eines
Deklassifikationseintrags sind jeweils das Alter und der Gesundheitswert des Zieleintrags
vom Deklassifikationseintrag. Der Zieleintrag von einem Deklassifikationseintrag D ist der
Eintrag E, so dass

* E.getID() gleich dem Parameter targetId ist, mit welchem D erstellt wurde; und

e E aus der Datenbank ist, mit welcher die ItemFactory assoziiert ist, mit welcher D
erstellt wurde.

Falls es keinen Zieleintrag gibt, wird eine IllegalArgumentException von der Methode
createDeclass geworfen. Beachten Sie, dass Zieleintrdge selber Deklassifikationseintriage
sein konnen. Ein Aufruf der Methode Ttem.setHealth(h) auf einem Deklassifikationsein-
trag hat keinen Effekt; dies wird nicht in den Tests tiberpriift.

Ein Deklassifikationseintrag R erreicht einen Eintrag A, falls entweder A der Zieleintrag von R
ist oder falls der Zieleintrag von R ein Deklassifikationseintrag ist, welcher A erreicht. Die
Methode createDeclass wirft eine I1legalArgumentException, falls der zuriickzugebene
Deklassifikationseintrag R einen Eintrag erreicht, dessen Level verwandt ist mit dem Level
von R. Zur Erinnerung: Der Paragraph iiber die Klasse Level erkldrt, wann zwei Level
verwandt sind.

154

Aufgabe 2:

Database

2. Implementieren Sie die Methode Database.createLink(List<Integer> ids). Der Metho-
denaufruf D.createLink(ids) verlinkt alle Eintrage der Datenbank D miteinander, welche
eine ID haben, die im Argument ids enthalten ist. Wenn E. setHealth(h) auf einem Eintrag
E aufgerufen wird, dann wird der Gesundheitswert aller Eintrage, welche mit E verlinkt sind,
auf das Argument h gesetzt. Eintrage konnen beliebig oft verlinkt werden und verlinken ist
transitiv, das heisst, wenn ein Eintrag A mit einem Eintrag B verlinkt ist und B mit einem
Eintrag C verlinkt ist, dann ist A auch mit C verlinkt. Verlinken ist auch immer symmetrisch,
das heisst, wenn A mit B verlinkt ist, dann ist auch B mit A verlinkt. Zuséitzlich ist verlinken
reflexiv, das heisst, ein Eintrag ist immer mit sich selber verlinkt.

Der Aufruf D.createLink(ids) soll eine I1legalArgumentException werfen, falls es eine
ID im Argument ids gibt, fiir welche es keinen Eintrag mit der gleichen ID in der Datenbank
D gibt.

Wir geben zwei Testdateien zur Verftigung. “DatabaseTest.java” enthalt Tests, welche wir an einer
Priifung geben wiirden. “GradingDatabaseTest.java” enthilt Tests, welche wir zum Korrigieren
einer Priifung verwenden wiirden. Testen Sie Ihre Losung zuerst ausgiebig mit “DatabaseTest.java”
(am besten fiigen Sie selber neue Tests hinzu) und dann kénnen Sie “GradingDatabaseTest.java”
verwenden, um zu sehen wie Thre Losung an einer Priifung abgeschnitten hatte.

155

Aufgabe 3:

Pyramide

Die Klasse Node représentiert einen Knoten in einem gerichteten Graphen, wobei es fiir jeden
Knoten 11 hochstens zwei gerichtete Kanten von 117 zu anderen Knoten 1>, 113 geben kann (11 und
n3 kénnen gleich sein). Wir unterscheiden dabei zwischen dem linken und dem rechten Knoten.
Die Methode Node .getLeft () gibt den linken Knoten und Node.getRight () den rechten Knoten
zuriick (als Nede-Objekt). Wenn der linke Knoten von 11 nicht existiert, dann gibt Node . getLeft ()
null zuriick (analog fiir den rechten Knoten).

Das Ziel dieser Aufgabe ist, fiir ein Node-Objekt zu entscheiden, ob der durch das Node-Objekt
definierte Graph einer Pyramide entspricht. Zum Beispiel entspricht der folgende Graph einer
Pyramide.

null null null null null null

156

Beachten Sie, dass der rechte Knoten von 1y gleich ist wie der linke Knoten von 12, (das heisst
die Node-Objekte sind gleich!). Ein Graph (wie oben reprisentiert) definiert eine Pyramide genau
dann, wenn folgende Bedingungen gelten:

¢ Der Graph kann in k > 1 Stufen (Stufe 1, Stufe 2,..., Stufe k) aufgeteilt werden, wobei Stufe i
aus i unterschiedlichen Knoten nj;, nj, ..., nj; besteht. Falls der Graph k Stufen hat, dann
hat dieser genau k(kzﬁ unterschiedliche Knoten (Knoten aus verschiedenen Stufen sind

unterschiedlich).

Aufgabe 3:

* Fur Stufe 7 (1 < < k) gilt: der linke Knoten von n;; (1 < j < i) ist durch n;,1); gegeben und
der rechte Knoten von ;; ist durch n(;, 1)(y1) gegeben.

Pyramide

* Fiir Stufe k gilt: es gibt keinen linken und keinen rechten Knoten fiir 1;; (1 < j < k).

Die folgenden Graphen entsprechen zum Beispiel keinen Pyramiden:
Implementieren Sie die boolean isPyramid(Node node)-Methode, welche, fiir den Graph G
durch node definiert, entscheidet, ob G eine Pyramide definiert. Sie diirfen annehmen, dass G
keine Zyklen hat. Die Methode soll eine I1legalArgumentException werfen, wenn das Argument
null ist.

Tipp: Priifen Sie die Bedingungen Stufe fiir Stufe, beginnend bei Stufe 1.

157

Aufgabe 3:

Pyramide

In dieser Aufgabe erweitern Sie eine vorherige Aufgabe, in welcher ein System fiir Stromverbrau-
che Rechnungen erstellt. Konkret gibt es drei Erweiterungen: (1) Es sollen auch nicht korrekt
formatierte Eingabedateien gehandhabt werden. (2) Ein Kunde kann eine beliebige Anzahl von
Verbrauchswerten haben. (3) Es gibt eine neue Unteraufgabe b. In der folgenden Aufgabenbe-
schreibung fiir Unteraufgabe a sind die Anderung in bold markiert.

Aufga be 4 - a) Vervollstindigen Sie die process-Methode in der Klasse Bills. Die Methode hat zwei Ar-
|}

gumente: einen Scanner, von dem Sie den Inhalt der Eingabedatei lesen sollen, und einen
PrintStream, in welchen Sie die unten beschriebenen Informationen schreiben.

Rechnungen

e rW e it e rt Die Aufgabestellung gibt an, wie mit nicht korrekt formatierten Eingaben umzugehen ist.
Ein Beispiel einer korrekt formatierten Datei finden Sie im Projekt unter dem Namen “Data.txt”.

Exceptions im Zusammenhang mit Ein- und Ausgabe kénnen Sie ignorieren.

Thr Programm muss auch mit manchen nicht korrekt formatierten Eingabedatein umgehen.

Eine valide Eingabedatei enthilt Zeilen, die entweder den Tarif, der angewendet werden
soll, oder die Daten fiir den Stromverbrauch eines Kunden beschreiben. Der Verbrauch eines
Kunden ist niemals grosser als 100000 Kilowattstunden.

Eine Tarifbeschreibung hat folgendes Format:

Tarif_n b pi .. upn

159

Try / Catch

Try-Catch: Handlen von Exception

Try-Catch

« try-Block: Wir setzen Code, welcher eine Exception produzieren konnte, welche wir catchen mdchten.

« catch-Block: Wir catchen eine Exception im catch-Block.

try {
// Code wird ausgefuhrt

} catch(ExceptionName e) {
// Hier wird die Exception gehandelt.

}

Nachbesprechung

Aufgabe 1:

Square
Grid

In dieser Aufgabe betrachten wir gerichtete Graphen, wobei es fiir jeden Knoten g hochstens
zwei gerichtete Kanten von g zu anderen Knoten f, h geben kann (f, g, h konnen gleich sein). Wir
unterscheiden dabei zwischen der rechten und der unteren Kante (und damit dem rechten und
dem unteren Knoten).

Die Klasse Node reprasentiert einen Knoten in einem solchen Graphen. Die Methode
Node.getRight () (bzw. Node.getDown()) gibt den rechten Knoten (bzw. unteren Knoten) zurtick
(als Node-Objekt). Wenn der rechte Knoten von ng nicht existiert, dann gibt Node.getRight ()
null zuriick (analog fir den unteren Knoten). Die Methode Node.setRight (Node r) (bzw.
Node.setDown(Node d)) setzt den rechten (bzw. unteren) Knoten.

Das Ziel der Aufgabe ist, einen von einem Node-Objekt definierten Graphen zu analysieren.
Konkret geht es darum, die Grosse des grossten quadratischen Gitters in dem Graphen zu
bestimmen, der mit dem ubergebenen Node-Objekt beschrieben wird, welches den gleichen
Ursprungsknoten wie der Graph hat.

163

Aufgabe 1:

Square
Grid

@) (b)

Abbildung 2: Graphen mit quadratischen Gittern als Teilgraphen

Referenzen vs Objekte

164

Aufgabe 2:

Umkehrung

In einem vorherigen Ubungsblatt haben Sie eine Linked List fiir Integers implementiert. In dieser
Aufgabe fiigen Sie dieser LinkedIntList eine weitere Methode hinzu, welche die Liste umkehrt.
Eine Liste gilt als umgekehrt, wenn fiir jedes Paar von Nodes a und b, fiir welche zuvor a ==
b.next gegolten hat, in der neuen (umgekehrten) Liste b == a.next gilt. Zusétzlich entspricht
nach der Umkehrung der erste Node der neuen Liste dem letzten Node der urspriinglichen Liste
(und umgekehrt).

Vervollstindigen Sie die Methode reverse() in der Klasse LinkedIntList. Die Methode soll,
wie oben definiert, die Liste umkehren. Achten Sie darauf, dass Sie wirklich die Reihenfolge
der Nodes selbst umkehren. Es reicht nicht aus, die Reihenfolge der enthaltenen int-Werte
umzukehren. Es miissen auch in der umgekehrten Liste dieselben Instanzen von IntNodes wie
in der urspriinglichen Liste verwendet werden. Erstellen Sie also keine neuen IntNodes mit
new IntNode().In der Datei “UmkehrungTestjava” finden Sie einen einfachen Test.

165

Aufgabe 3:
“KI” fur

das
Ratespiel

In Ubung 5 implementierten Sie ein Spiel, in welchem der Computer ein Wort auswéhlt und
der Spieler dieses erraten muss. Dort war der Spieler der Benutzer des Programms. In dieser
Aufgabe sollen Sie verschiedene “kiinstliche” Spieler entwickeln. Das heisst, anstelle des Menschen,
der tber die Konsole Tipps eingibt, werden die Tipps von (mehr oder weniger “intelligenten”)
Programmen abgegeben. Ihr Ziel ist es, einen kiinstlichen Spieler zu entwickeln, der tiber mehrere
Spiele hinweg die Wérter in so wenig Versuchen wie méglich errit.

Die Ubungsvorlage enthilt bereits den Code fiir das Ratespiel. Gegeniiber Ubung 5 ist dieser
nun in verschiedene Klassen aufgeteilt. Die drei Hauptklassen sind RateSpiel, Computer und
Spieler. Die Klasse RateSpielApp enthilt eine main-Methode, welche das Spiel aufsetzt und
durchfiihrt. Durch die Aufteilung ist es moglich, mittels Vererbung Spieler mit unterschiedlichem
Verhalten zu schreiben. Die Klasse Spieler enthilt namlich nur die Deklarationen der benotigten
Methoden, aber keine (sinnvolle) Funktionalitat. Subklassen von Spieler tiberschreiben diese
Methoden und definieren damit das Verhalten eines Spielers.

Ein konkreter Spieler ist ebenfalls schon in der Vorlage vorhanden: der KonsolenSpieler.
Dieser besitzt allerdings keine eigene “Intelligenz”, sondern holt sich die Tipps iiber die Konsole
vom Benutzer. Ein RateSpiel mit einem KonsolenSpieler verhilt sich also so wie das Spiel in
Ubung 5. Starten Sie die RateSpielApp und iiberzeugen Sie sich selbst®.

166

Aufgabe 4:

Klassenratsel

In dieser Aufgabe sollen Sie zeigen, dass Sie mit Klassen und Vererbung umgehen kénnen. Im
Anhang A finden Sie ein Programm, welches Instanzen von Klassen erstellt und Methoden
aufruft. Das Programm macht nichts Sinnvolles und dient nur dem Testen Ihrer Fihigkeiten. In
Anhang B befinden sich die verwendeten Klassen, jedoch sind die Klassen noch nicht vollstandig,.
Bei manchen der Klassen fehlt noch die extends-Klausel, welche angibt, dass eine Klasse von
einer anderen Klasse erbt. Thre Aufgabe ist es, die notigen extends-Klauseln hinzuzufiigen, so
dass alles kompiliert und so dass die Ausgabe des Programms von Anhang A am Ende so aussieht
wie im Anhang C gezeigt.

Der Code von Anhang A and Anhang B befindet sich in Threm src-Ordner. Zusitzlich enthalt
“KlassenTest.java” einen Unit-Test, welcher priift, ob die Ausgabe des Programms dem Qutput aus
Anhang C entspricht. Beachten Sie, dass Sie fiir diese Aufgabe ausschliesslich extends-Klauseln
hinzufiigen (diese kann es nur an den grauen Boxen aus Anhang B geben), kein anderer Code
darf verandert werden.

Tipp: Losen Sie die Aufgabe zuerst auf Papier, ohne die Hilfe von Eclipse. Sobald Sie heraus-
gefunden haben, welche Klassen von welchen Klassen erben, testen Sie Ihre Losung in Eclipse.
Dies hilft Thnen, Ihr Wissen tiber Vererbung zu testen. In der Vergangenheit wurden dhnliche
Aufgaben im schriftlichen Teil der Priifung gestellt.

167

	Slide 1
	Slide 2: Organisatorisches
	Slide 3
	Slide 4: Inheritance
	Slide 5: Extends-Schlüsselwort
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Attributwahl
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Methodenwahl
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: this und super
	Slide 82: Keywords bei Objekten
	Slide 83: Keywords bei Objekten
	Slide 84: Loop-Invariante
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113: Problem Solving: Klassen
	Slide 114: Hogwarts (2020 W11)
	Slide 115: Die Klassen können folgendermassen verwendet werden:
	Slide 116
	Slide 117
	Slide 118: Code-Skelett:
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129: Jetzt Klassen implementieren
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143: Scanner
	Slide 144: Scanner: Methoden
	Slide 145: Scanner: Methoden
	Slide 146: Scanner: LOCALE
	Slide 147: Kahoot zu Inheritance
	Slide 148: Vorbesprechung
	Slide 149: Aufgabe 1: Loop-Invarianten
	Slide 150: Aufgabe 1: Loop-Invarianten
	Slide 151: Aufgabe 2: Database
	Slide 152: Aufgabe 2: Database
	Slide 153: Aufgabe 2: Database
	Slide 154: Aufgabe 2: Database
	Slide 155: Aufgabe 2: Database
	Slide 156: Aufgabe 3: Pyramide
	Slide 157: Aufgabe 3: Pyramide
	Slide 158: Aufgabe 3: Pyramide
	Slide 159: Aufgabe 4: Rechnungen (erweitert)
	Slide 160: Try / Catch
	Slide 161: Try-Catch: Handlen von Exception
	Slide 162: Nachbesprechung
	Slide 163: Aufgabe 1: Square Grid
	Slide 164: Aufgabe 1: Square Grid
	Slide 165: Aufgabe 2: Umkehrung
	Slide 166: Aufgabe 3: “KI” für das Ratespiel
	Slide 167: Aufgabe 4: Klassenrätsel

