
252-0027

Einführung in die Programmierung
Übungen

Woche 11: Vererbung

Timo Stucki
Departement Informatik
ETH Zürich

Organisatorisches

▪ Mein Name: Timo Stucki

▪ Bei Fragen: tistucki@student.ethz.ch

▪ Mails bitte mit «[EProg25]» im Betreff

▪ Neue Aufgaben: Dienstag Abend (im Normalfall)

▪ Abgabe der Übungen bis Dienstag Abend (23:59) Folgewoche

▪ Abgabe immer via Git

▪ Lösungen in separatem Projekt auf Git

2

Inheritance

Extends-Schlüsselwort

▪ extends spezifiziert, dass eine
Klasse von einer anderen erbt

▪ Wir nennen die erbende Klasse
im Folgenden Subklasse…

▪ und die vererbende Klasse
Superklasse

5

Katze

Tier

6

Katze

Tier

Hund

HuskyLöwe Tiger

7

Tier

Hund

Husky

Vererbungshierarchie

Die Pfeile sind eine

“ist ein” - Beziehung

• Ein Hund ist ein Tier.

• Nicht alle Tiere sind ein Hund.

• Ein Husky ist ein Tier und ein

Hund.

8

Katze

Tier

Hund

HuskyLöwe Tiger

Objekt vs Referenz

new Tier()

new Hund()

new Husky()

Das sind Objekte.
• Objekte ändern nie

ihren Typ.

• Ein Husky-Objekt ist

und bleibt ein Husky-

Objekt.

• Ein Katzen-Objekt kann

kein Löwen-Objekt

werden.

9

Katze

Tier

Hund

HuskyLöwe Tiger

Objekt vs Referenz

Tier t = new Tier()

Tier hd = new Hund()

Husky hy = new Husky()

Das sind Variablen.
• Variablen enthalten

Referenzen oder Werte.

• Die Referenz in einer

Variable kann sich

durch Zuweisung mit =
ändern.

10

Katze

Tier

Hund

HuskyLöwe Tiger

Objekt vs Referenz

Tier t = new Tier()

Tier hd = new Hund()

Husky hy = new Husky()

Das ist der Typ der Variable.

• Der Typ der Variable

kann sich dynamisch

verändern.

• Eine Variable vom Typ

Tier kann eine

Referenz auf ein Objekt

vom Typ Hund enthalten.

11

Tier

Hund

Husky

Objekt vs Referenz

Tier hd = new Hund()

Tier hd new Hund()

Im Code

Was dies macht.

12

Tier

Hund

Husky

Objekt vs Referenz
Tier hd

Tier hd

13

Tier

Hund

Husky

Objekt vs Referenz
Tier hd new Hund();

Tier hd new Hund()

14

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd new Hund()

15

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

Tier hd new Hund()

Tier hd2 new Hund()

16

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

Tier hd new Hund()

Tier hd2 new Hund()

17

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

hd = hd2;

Tier hd new Hund()

Tier hd2 new Hund()

18

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

hd = hd2;

Tier hd new Hund()

Tier hd2 new Hund()

19

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

hd = hd2;

Tier hy = new Husky();

Tier hd new Hund()

Tier hd2 new Hund()

20

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

hd = hd2;

Tier hy = new Husky();

Tier hd new Hund()

Tier hd2 new Hund()

Tier hy new Husky()

21

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

hd = hd2;

Tier hy = new Husky();

hd2 = hy;

Tier hd new Hund()

Tier hd2 new Hund()

Tier hy new Husky()

22

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

hd = hd2;

Tier hy = new Husky();

hd2 = hy;

Tier hd new Hund()

Tier hd2 new Hund()

Tier hy new Husky()

Die Objekte bleiben

unverändert!

23

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

hd = hd2;

Tier hy = new Husky();

hd2 = hy;

Tier hd new Hund()

Tier hd2 new Hund()

Tier hy new Husky()

Die Variable bleibt

vom Typ Tier.

24

Tier

Hund

Husky

Objekt vs Referenz
Tier hd = new Hund();

Tier hd2 = new Hund();

hd = hd2;

Tier hy = new Husky();

hd2 = hy;

Tier hd new Hund()

Tier hd2 new Hund()

Tier hy new Husky()

Die Referenzen in

den Variablen

verändern sich!

25

Tier

Hund

Husky

Objekt vs Referenz

Wie unterscheiden wir zwischen:

• Typ der Variable

• Typ des Objekts auf welches die Referenz in der

Variable zeigt?

Tier hd = new Husky()

26

Tier

Hund

Husky

Objekt vs Referenz

Wie unterscheiden wir zwischen:

• Typ der Variable

• Typ des Objekts auf welches die Referenz in der

Variable zeigt?

Tier hd = new Husky();

hd = new Hund();

hd = new Tier();

27

Tier

Hund

Husky

Objekt vs Referenz

Wie unterscheiden wir zwischen:

• Typ der Variable (Statischer Typ)

• Typ des Objekts auf welches die Referenz in der

Variable zeigt?

Tier hd = new Husky()

28

Tier

Hund

Husky

Objekt vs Referenz

Wie unterscheiden wir zwischen:

• Typ der Variable (Statischer Typ)

• Typ des Objekts auf welches die Referenz in der

Variable zeigt? (Dynamischer Typ)

Tier hd = new Husky()

29

Katze

Tier

Hund

HuskyLöwe Tiger

Ein Objekt der Subklasse

ist immer auch vom Typ

der Superklasse.

Misconception: Objekte

30

Katze

Tier

Hund

HuskyLöwe Tiger

Misconception: Objekte

Ein Objekt der Superklasse

ist nie vom Typ der

Subklasse.

31

Katze

Tier

Hund

HuskyLöwe Tiger

Was wirklich passiert

Eine Variable vom Typ der

Superklasse kann immer

eine Referenz auf ein

Objekt der Subklasse

enthalten.

Tier hd = new Husky()

32

Katze

Tier

Hund

HuskyLöwe Tiger

Ein Variable vom Typ der

Subklasse kann nie auf

ein Objekt der

Superklasse verweisen.

Was wirklich passiert

Husky hd = new Tier()

33

Katze

Tier

Hund

HuskyLöwe Tiger

Verdeutlicht – Was für Typen akzeptiert eine Variable?

Statischer Typ

Möglicher Dynamischer Typ

Katze

Tier

Hund

HuskyLöwe Tiger

34

Statischer Typ

Möglicher Dynamischer Typ

Verdeutlicht – Was für Typen akzeptiert eine Variable?

Tier hd = new Husky()

Funktionieren diese Zuweisungen?

Tier k1 = new Katze()

Tier t1 = new Tiger()

Katze

Tier

Hund

HuskyLöwe Tiger

35

Verdeutlicht – Was für Typen akzeptiert eine Variable?

Statischer Typ

Möglicher Dynamischer Typ

Katze

Tier

Hund

HuskyLöwe Tiger

36

Verdeutlicht – Was für Typen akzeptiert eine Variable?

Katze k1 = new Katze()

Funktionieren diese Zuweisungen?

Tier t1 = new Tiger()

Katze k3 = t1

Statischer Typ

Möglicher Dynamischer Typ

Was sieht der Compiler?

Katze

Tier

Hund

HuskyLöwe Tiger

37

Verdeutlicht – Was für Typen akzeptiert eine Variable?

Statischer Typ

Möglicher Dynamischer Typ

Warum ist das problematisch?

Katze = Tier

Katze k3 = t1

Tier t1 = new Tiger()

38

Verdeutlicht – Was für Typen akzeptiert eine Variable?

Warum ist das problematisch?

Was sieht der Compiler?

Katze = Tier

Die Zuweisung ist unsicher, da der Compiler keine Garantie hat, dass

der dynamische Typ von t1 mit dem Typ Katze kompatibel ist.

Intuitiv: Nicht jedes Tier ist eine Katze.

Katze k3 = t1

Tier t1 = new Tiger()

39

Verdeutlicht – Was für Typen akzeptiert eine Variable?

Warum ist das problematisch?

Was sieht der Compiler?

Katze = Tier

Aber wir probieren doch nur einen Tiger (subklasse der Katze) in k3 zu

speichern…

Katze k3 = t1

Tier t1 = new Tiger()

Wir müssen dem Compiler garantieren können, dass er hier immer

eine Subklasse von Katze bekommt, damit die Zuweisung legal ist.

40

Casting

41

Katze

Tier

Hund

HuskyLöwe Tiger

Casting
Hund h1;

Hund h1

42

Katze

Tier

Hund

HuskyLöwe Tiger

Casting

Tier h2 = new Hund();

Hund h1

Tier h2

new Hund()

Hund h1;

43

Katze

Tier

Hund

HuskyLöwe Tiger

Casting

Hund h1

Tier h2

new Hund()

h1 = h2;

Tier h2 = new Hund();

Hund h1;

44

Katze

Tier

Hund

HuskyLöwe Tiger

Casting

Hund h1

Tier h2

new Hund()

h1 = h2;

Tier h2 = new Hund();

Hund h1;

45

Katze

Tier

Hund

HuskyLöwe Tiger

Casting

Hund h1

Tier h2

new Hund()

java: incompatible types: Tier cannot be
converted to Hund

h1 = h2;

Tier h2 = new Hund();

Hund h1;

Wieso geht das nicht?

46

Tier

Hund

Husky

Casting

Hund h1

Tier h2

new Hund() Wieso geht das nicht?

Von wo wissen wir, dass h2 eine Referenz

auf ein Objekt vom Typ Hund enthält?

Wir kennen den dynamischen Typ…

h1 = h2;

Tier h2 = new Hund();

Hund h1;

47

Tier

Hund

Husky

Casting
void methode1(Tier h2) {

Hund h1;

h1 = h2;
}

Hund h1

Tier h2

new Hund() Hier kennen wir den dynamischen Typ nicht…

?

48

Tier

Hund

Husky

Casting
void methode1(Tier h2) {

Hund h1;

h1 = h2;
}

Hund h1

Tier h2

new Hund()
Wenn wir methode1 nur aufrufen, wenn h2
eine Referenz auf ein Objekt vom Typ Hund

enthält, dann würde eigentlich h1 = h2 immer

gehen!

49

Tier

Hund

Husky

Casting
void methode1(Tier h2) {

Hund h1;

h1 = (Hund) h2;
}

Hund h1

Tier h2

new Hund()
Wenn wir methode1 nur aufrufen, wenn h2
eine Referenz auf ein Objekt vom Typ Hund

enthält, dann würde eigentlich h1 = h2 immer

gehen!

Ein Cast ist ein Versprechen an den Compiler, dass

dies der Fall ist.

50

Tier

Hund

Husky

Casting
void methode1(Tier h2) {

Hund h1;
h1 = (Hund) h2;

}

void methode2() {
Tier t = new Hund();
methode1(t);

}

Hund h1

Tier h2

new Hund()

Geht das?

Tier t

Die Einschränkung auf einen Typen weiter unten im

Baum nennt man einen Downcast.

51

Tier

Hund

Husky

Casting
void methode1(Tier h2) {

Hund h1;
h1 = (Hund) h2;

}

void methode2() {
Tier t = new Tier();
methode1(t);

}

Hund h1

Tier h2

new Tier()

Geht das?

Tier t

52

Tier

Hund

Husky

Casting
void methode1(Tier h2) {

Hund h1;
h1 = (Hund) h2;

}

void methode2() {
Tier t = new Tier();
methode1(t);

}

Hund h1

Tier h2

new Tier()

Geht das?

Tier t

Exception in thread "main" java.lang.ClassCastException: class
Tier cannot be cast to class Hund

53

Tier

Hund

Husky

Casting: Laufzeitfehler vs Compiler Fehler

Hund h = new Tier();

Exception in thread "main" java.lang.Error: Unresolved
compilation problem:

Type mismatch: cannot convert from Tier to Hund

Compiler-Fehler: Die Typen sind nie kompatibel.

54

Tier

Hund

Husky

Casting: Laufzeitfehler vs Compiler Fehler

Tier t = new Tier();
Hund h = (Hund) t;

Exception in thread "main" java.lang.ClassCastException:
class Tier cannot be cast to class Hund

Laufzeitfehler: Die Typen sind zwar nie

kompatibel, aber das Versprechen (der Cast) an

den Compiler lässt das Programm kompilieren.

• Beim Ausführen gibt es einen Laufzeitfehler.

55

Tier

HundKatze

Casting: Laufzeitfehler vs Compiler Fehler

Tier k = new Katze();
Tier h = new Hund();

h = k;

Geht das?

56

Tier

HundKatze

Casting: Laufzeitfehler vs Compiler Fehler

Tier k = new Katze();
Hund h = new Hund();

h = k;

Exception in thread "main" java.lang.Error: Unresolved
compilation problem:

Type mismatch: cannot convert from Tier to Hund

Geht das?

Attributwahl

58

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Regel: Attribute werden anhand

vom statischen Typ ausgewählt.

59

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Tier t = new Tier();

System.out.println(t.x);

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

60

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Tier t = new Tier();

System.out.println(t.x);

Resultat: 1

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

61

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Tier t = new Hund();

System.out.println(t.x);

Resultat: 1

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

62

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Tier t = new Husky();

System.out.println(t.x);

Resultat: 1

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

63

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Husky t = new Husky();

System.out.println(t.x);

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

64

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Husky t = new Husky();

System.out.println(t.x);

Resultat: 3

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

65

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

Husky t = new Husky();

System.out.println(t.x);

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

66

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

Husky t = new Husky();

System.out.println(t.x);

Resultat: 2

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

Einer Klasse stehen grundätzlich alle nicht private Variablen

der Superklasse zur Verfügung. Wird die Variable explizit

deklariert, wird die vererbte Variable “verdeckt” und ist nicht

mehr zugänglich.

67

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Husky t = new Husky();

System.out.println(((Hund)t).x);

Resultat: 2

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

68

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Regel: Attribute werden an Hand

vom statischen Typ ausgewählt.

Husky t = new Husky();

System.out.println(((Hund)t).x);

Resultat: 2

Durch den Cast sehen wir: Das neu definieren von x hat

keine Auswirkung auf x der Superklasse.

69

Tier

Hund

Husky

Attribute:

int x =1

int x = 2

int x = 3

Husky t = new Husky();

System.out.println(((Hund)t).x);

Husky t = new Husky();

Hund casted_t = (Hund) t;

System.out.println(casted_t.x);

Hier wird implizit eine neue, temporäre

Variable mit statischem Typ Hund erstellt.

Methodenwahl

71

Tier

Hund

Husky

Methoden:

method1() {

return x;

}

Regel: Methoden* werden anhand

vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

int x =1

int x = 2

int x = 3

Tier t = new Husky();

System.out.println(t.method1());

method1() {

return x;

}

method1() {

return x;

}

Resultat: 3

72

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

int x = 3

Hund t = new Husky();

System.out.println(t.method1());

method1() {

return x;

}

method1() {

return x;

}

Resultat: 3

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

73

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

int x = 3

Hund t = new Hund();

System.out.println(t.method1());

method1() {

return x;

}

method1() {

return x;

}

Resultat: 2

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

74

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

int x = 3

Tier t = new Husky();

System.out.println(t.method1());

Resultat: 1 ? method1 existiert in der Husky Klasse nicht.

Deshalb gehen wir durch alle Superklassen

durch, bis wir eine solche Methode finden.

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

75

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

int x = 3

Tier t = new Husky();

System.out.println(t.method1());

Resultat: 1 method1 existiert in der Husky Klasse nicht.

Deshalb gehen wir durch alle Superklassen

durch, bis wir eine solche Methode finden.

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

76

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

int x = 3

Tier t = new Husky();

System.out.println(t.method1());

Resultat: 1 method1 existiert in der Husky Klasse nicht.

Deshalb gehen wir durch alle Superklassen

durch, bis wir eine solche Methode finden.

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

77

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

int x = 3

method1 existiert in der Husky Klasse nicht. Deshalb gehen wir durch

alle Superklassen durch, bis wir eine solche Methode finden.

Das Attribut x wird weiterhin statisch ausgewählt.

• Beim Kompilieren wird bestimmt, dass falls method1 in der Klasse

Tier aufgerufen wird, dass wir immer das Attribut x aus der Klasse

Tier wählen.

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

78

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

int x = 3

Tier t = new Husky();

System.out.println(t.method1());

Resultat: 2

method1() {

return x;

}

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

79

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

int x = 3

Tier t = new Husky();

System.out.println(t.method1());

Resultat: 3

method1() {

return x;

}

method1() {

return x;

}

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

80

Tier

Hund

Husky

Methoden:

method1() {

return x;

}
int x =1

int x = 2

Tier t = new Husky();

System.out.println(t.method1());

Resultat: 2

method1() {

return x;

}

method1() {

return x;

} Husky hat selbst kein Attribut x. Beim Kompilieren wird bestimmt,

dass falls method1 in der Klasse Husky aufgerufen wird, dass

immer das Attribut x aus der Superklasse gewählt wird.

Regel: Methoden* werden an

Hand vom dynamischen Typ

ausgewählt.
* ausser private, static und final Methoden (hier statischer Typ)

this und super

Keywords bei Objekten

▪ new MyClass(…)

▪ Ruft einen Konstruktor von MyClass mit der entsprechenden
Argumentenliste auf

▪ super(…)

▪ Ruft einen Konstruktor der Superklasse mit der entsprechenden
Argumentenliste auf

82

Keywords bei Objekten

▪ this ist eine Referenz auf das Objekt, aus dem wir gerade arbeiten und kann auch ganz
normal als Objektreferenz behandelt werden

▪ this(…)

▪ Ruft den passenden Konstruktor auf

▪ this.field

▪ Gibt das angesprochene Objektattribut

▪ this.someMethod()

▪ Ruft die angesprochene Methode auf

▪ otherMethod(this, 7)

▪ Übergibt die Referenz auf das aktuelle Objekt

83

Loop-Invariante

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

85

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

86

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert

87

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert

Bsp:

k = 1234

k / 10 = 123

88

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert → immer die letzte Ziffer wird

“abgeschnitten”

Bsp:

k = 1234

k / 10 = 123

89

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert → immer die letzte Ziffer wird

“abgeschnitten”

⚫ In jeder Iteration wird k % 10 zu n addiert

90

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert → immer die letzte Ziffer wird

“abgeschnitten”

⚫ In jeder Iteration wird k % 10 zu n addiert

Bsp:

k = 1234

k % 10 = 4

91

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert → immer die letzte Ziffer wird

“abgeschnitten”

⚫ In jeder Iteration wird k % 10 zu n addiert →

immer die letzte Ziffer wird dazu addiert

Bsp:

k = 1234

k % 10 = 4

92

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert → immer die letzte Ziffer wird

“abgeschnitten”

⚫ In jeder Iteration wird k % 10 zu n addiert →

immer die letzte Ziffer wird dazu addiert

⚫ => n == alle Ziffern von i zusammen addiert

93

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert → immer die letzte Ziffer wird

“abgeschnitten”

⚫ In jeder Iteration wird k % 10 zu n addiert →

immer die letzte Ziffer wird dazu addiert

⚫ => n == alle Ziffern von i zusammen addiert.

⚫ das ist die Quersumme von i

94

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert → immer die letzte Ziffer wird

“abgeschnitten”

⚫ In jeder Iteration wird k % 10 zu n addiert →

immer die letzte Ziffer wird dazu addiert

⚫ => n == alle Ziffern von i zusammen addiert.

⚫ das ist die Quersumme von I

• Postcondition anschauen

95

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen:

• Code anschauen: was passiert?

⚫ Initialisierung

⚫ Bis k == 0 ist, wird k in jeder Iteration durch 10

dividiert → immer die letzte Ziffer wird

“abgeschnitten”

⚫ In jeder Iteration wird k % 10 zu n addiert →

immer die letzte Ziffer wird dazu addiert

⚫ => n == alle Ziffern von i zusammen addiert.

⚫ das ist die Quersumme von I

• Postcondition anschauen

⚫ Unsere Vermutung war also richtig: die

Quersumme von i wird berechnet

96

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

97

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

• k und n werden während dem Loop verändert, also

müssen diese irgendwie in der Invariante

vorkommen

98

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

• k und n werden während dem Loop verändert, also

müssen diese irgendwie in der Invariante

vorkommen

• Versuch 1: quersumme(k) == n

99

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

• k und n werden während dem Loop verändert, also

müssen diese irgendwie in der Invariante

vorkommen

• Versuch 1: quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) == 0

100

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

• k und n werden während dem Loop verändert, also

müssen diese irgendwie in der Invariante

vorkommen

• Versuch 1: quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) == 0

⚫ Wir haben links also quersumme(i) “zu viel”

101

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

• k und n werden während dem Loop verändert, also

müssen diese irgendwie in der Invariante

vorkommen

• Versuch 1: quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) == 0

⚫ Wir haben links also quersumme(i) “zu viel”

• Versuch 2: quersumme(k) - quersumme(i) == n

102

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

• k und n werden während dem Loop verändert, also

müssen diese irgendwie in der Invariante

vorkommen

• Versuch 1: quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) == 0

⚫ Wir haben links also quersumme(i) “zu viel”

• Versuch 2: quersumme(k) - quersumme(i) == n

• Prüfen:

⚫ Anfangs: quersumme(i) – quersumme(i) == 0

103

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

• k und n werden während dem Loop verändert, also

müssen diese irgendwie in der Invariante

vorkommen

• Versuch 1: quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) == 0

⚫ Wir haben links also quersumme(i) “zu viel”

• Versuch 2: quersumme(k) - quersumme(i) == n

• Prüfen:

⚫ Anfangs: quersumme(i) – quersumme(i) == 0

⚫ Ende: quersumme(0) – quersumme(i) == quersumme(i)

104

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Am Schluss wollen wir auf die Postcondition

kommen. Aber quersumme(i) == n stimmt am

Anfang im Allgemeinen definitiv nicht

• quersumme(i) != 0

• k und n werden während dem Loop verändert, also

müssen diese irgendwie in der Invariante

vorkommen

• Versuch 1: quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) == 0

⚫ Wir haben links also quersumme(i) “zu viel”

• Versuch 2: quersumme(k) - quersumme(i) == n

• Prüfen:

⚫ Anfangs: quersumme(i) – quersumme(i) == 0

⚫ Ende: quersumme(0) – quersumme(i) == quersumme(i)

⚫ Das Vorzeichen stimmt nicht
105

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Versuch 3: quersumme(i) – quersumme(k) == n

106

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Versuch 3: quersumme(i) – quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) – quersumme(i) == 0

107

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Versuch 3: quersumme(i) – quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) – quersumme(i) == 0

⚫ Nach jeder Iteration:

⚫ quersumme(i) – quersumme(k/10) == n + k%10

⚫ “k ohne letzte Ziffer” ”letzte Ziffer von k”

108

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

• Versuch 3: quersumme(i) – quersumme(k) == n

• Prüfen:

⚫ Anfangs: quersumme(i) – quersumme(i) == 0

⚫ Nach jeder Iteration:

⚫ quersumme(i) – quersumme(k/10) == n + k%10

⚫ “k ohne letzte Ziffer” ”letzte Ziffer von k”

⚫ Ende: quersumme(i) – quersumme(0) == quersumme(i)

• Korrekt !!

109

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

Inv: quersumme(i) – quersumme(k) == n

• Es fehlt noch etwas!

110

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

Inv: quersumme(i) – quersumme(k) == n

• Es fehlt noch etwas!

• Der Parameter von quersumme() muss positiv sein:

• i >= 0 && k >= 0

• (ein Hint, um darauf zu kommen, kann uns die

Precondition geben)

111

public static int compute(int i) {

// Precondition: i >= 0

int n;

int k;

n = 0;

k = i;

//Loop-Invariante:

While (k != 0) {

n += k % 10;

k = k / 10;

}

//Postcondition: quersumme(i) == n

return n;

} //quersumme(i) gibt die Quersumme von int i zurück (i >= 0)

Loop-Invariante vorgehen (Fortsetzung):

Inv: quersumme(i) – quersumme(k) == n

• Es fehlt noch etwas!

• Der Parameter von quersumme muss positiv sein:

• i >= 0 && k >= 0

• (ein Hint, um darauf zu kommen, kann uns die

Precondition geben)

• Fertige Invariante:

quersumme(i) – quersumme(k) == n && i >= 0 && k >= 0

112

Problem Solving: Klassen

Hogwarts (2020 W11)
In dieser Aufgabe implementieren Sie das Punktesystem von
Hogwarts, bei welchem Studenten eines Hauses Punkte verliehen
oder abgezogen bekommen können und dadurch der kumulative
Punktestand ihres Hauses sich verändert. Wir verwenden drei
Klassen, School, House, und Student, für die Schule, Häuser, und
Studenten

114

Die Klassen können folgendermassen verwendet werden:

115

1. Implementieren Sie den School-Konstruktor und die Methode createHouse(String name),
welche als Parameter den gewünschten Namen des Hauses nimmt und ein House Objekt
zurückgibt. Der Name eines Hauses darf nicht null sein oder bereits für die Schule vorhanden
sein. Die Methode soll in diesen Fällen eine IllegalArgumentException werfen. Alle anderen
Namen sind erlaubt. Implementieren Sie zusätzlich die Methode name() der Klasse House,
welche den Namen des Hauses als String zurückgibt.

2. Implementieren Sie den Konstruktor von Student, welcher zwei Strings, den Vor- und
Nachnamen (in dieser Reihenfolge) nimmt. Sie dürfen annehmen, dass es jeden Namen (Vor-
und Nachname zusammen) nur einmal gibt. Vor- und Nachnamen sollen über die Methode
firstName() beziehungsweise lastName() erhalten werden können. Implementieren Sie
zusätzlich die Methode assign(Student student) der Klasse House, welche einen Studenten
als Argument nimmt und ihn in dieses Haus einschreibt. Bei einem null Argument oder falls
der Student bereits bei einem Haus der gleichen Schule eingeschrieben ist, dann soll die
Methode eine IllegalArgumentException werfen.

116

Als letztes implementieren Sie das Punktesystem. Implementieren Sie dafür vier Methoden:
Die Method points() von House gibt die Punkte eines Hauses zurück. Jedes Haus beginnt
mit einem Punktestand von 0, wenn es erstellt wird. Dieser Punktestand kann sich dann
durch die Leistungen der Studenten verändern. Die Methode givePoints(int points) von
Student nimmt eine positive oder negative Anzahl Punkte, welche dem Studenten verliehen
werden. Erhaltene Punkte zählen nur, wenn der Student einem Haus bereits zugewiesen
wurde. Die erhaltenen Punkte werden dann den Häusern zugeschrieben, welchen der
Student zugewiesen ist. Dabei können die Punkte eines Hauses nicht kleiner als 0 werden.
Auch wenn einem Studenten mehr Punkte abgezogen werden, geht der Punktestand eines
Hauses nur auf 0. Zum Beispiel, wenn Hufflepuff in der Summe 5 Punkte hat und Hannah -
10 Punkte verliehen werden, dann werden nur -5 Punkte tatsächlich für Hufflepuff
verrechnet, der Rest wird ignoriert. Zusätzlich implementieren Sie die Methode winner() von
School, welche das Haus mit den meisten Punkten zurückgibt. Falls mehrere Häuser die
gleiche Punktzahl haben, dann kann ein beliebiges dieser Häuser zurückgegeben werden.
Falls es kein Haus gibt, dann soll die Methode eine IllegalArgumentException werfen. Und
implementieren Sie die Methode points() von School, welche die Summe der Punktestände
der Häuser zurückgibt.

117

Code-Skelett:

School
Fields:
-

Konstruktor:
-

Methods:
House createHouse(String name)
House winner()
int points()

House
Fields:
-

Konstruktor:
-

Methods:
String name()
int points()
void assign(Student student)

Student
Fields:
-

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points)

118

School
Fields:
-

Konstruktor:
-

Methods:
House createHouse(String name)
House winner()
int points()

House
Fields:
-

Konstruktor:
-

Methods:
String name()
int points()
void assign(Student student)

Student
Fields:
-

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points)

1. Implementieren Sie den School-Konstruktor und die Methode createHouse(String name),
welche als Parameter den gewünschten Namen des Hauses nimmt und ein House Objekt
zurückgibt. Der Name eines Hauses darf nicht null sein oder bereits für die Schule vorhanden
sein. Die Methode soll in diesen Fällen eine IllegalArgumentException werfen. Alle anderen
Namen sind erlaubt. Implementieren Sie zusätzlich die Methode name() der Klasse House,
welche den Namen des Hauses als String zurückgibt.

119

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner()
int points()

House
Fields:
String name

Konstruktor:
House(String name)

Methods:
String name()
int points()
void assign(Student student)

Student
Fields:
-

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points)

1. Implementieren Sie den School-Konstruktor und die Methode createHouse(String name),
welche als Parameter den gewünschten Namen des Hauses nimmt und ein House Objekt
zurückgibt. Der Name eines Hauses darf nicht null sein oder bereits für die Schule vorhanden
sein. Die Methode soll in diesen Fällen eine IllegalArgumentException werfen. Alle anderen
Namen sind erlaubt. Implementieren Sie zusätzlich die Methode name() der Klasse House,
welche den Namen des Hauses als String zurückgibt.

120

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner()
int points()

House
Fields:
String name

Konstruktor:
House(String name)

Methods:
String name()
int points()
void assign(Student student)

Student
Fields:
-

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points)

2. Implementieren Sie den Konstruktor von Student, welcher zwei Strings, den Vor- und
Nachnamen (in dieser Reihenfolge) nimmt. Sie dürfen annehmen, dass es jeden Namen (Vor-
und Nachname zusammen) nur einmal gibt. Vor- und Nachnamen sollen über die Methode
firstName() beziehungsweise lastName() erhalten werden können. Implementieren Sie
zusätzlich die Methode assign(Student student) der Klasse House, welche einen Studenten
als Argument nimmt und ihn in dieses Haus einschreibt. Bei einem null Argument oder falls
der Student bereits bei einem Haus der gleichen Schule eingeschrieben ist, dann soll die
Methode eine IllegalArgumentException werfen.

121

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner()
int points()

House
Fields:
String name
School school
List<Student> students

Konstruktor:
House(String name, School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht schon
in anderem Haus derselben Schule
}

Student
Fields:
String firstName, lastName

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points)

2. Implementieren Sie den Konstruktor von Student, welcher zwei Strings, den Vor- und
Nachnamen (in dieser Reihenfolge) nimmt. Sie dürfen annehmen, dass es jeden Namen (Vor-
und Nachname zusammen) nur einmal gibt. Vor- und Nachnamen sollen über die Methode
firstName() beziehungsweise lastName() erhalten werden können. Implementieren Sie
zusätzlich die Methode assign(Student student) der Klasse House, welche einen Studenten
als Argument nimmt und ihn in dieses Haus einschreibt. Bei einem null Argument oder falls
der Student bereits bei einem Haus der gleichen Schule eingeschrieben ist, dann soll die
Methode eine IllegalArgumentException werfen.

122

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner()
int points()

House
Fields:
String name
School school
List<Student> students

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht schon
in anderem Haus derselben Schule
}

Student
Fields:
String firstName, lastName

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points)

Als letztes implementieren Sie das Punktesystem. Implementieren Sie dafür vier Methoden:
Die Method points() von House gibt die Punkte eines Hauses zurück. Jedes Haus beginnt mit
einem Punktestand von 0, wenn es erstellt wird.

123

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner()
int points()

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht schon
in anderem Haus derselben Schule
}

Student
Fields:
String firstName, lastName

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points)

Als letztes implementieren Sie das Punktesystem. Implementieren Sie dafür vier Methoden:
Die Method points() von House gibt die Punkte eines Hauses zurück. Jedes Haus beginnt mit
einem Punktestand von 0, wenn es erstellt wird.

124

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner()
int points()

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht schon
in anderem Haus derselben Schule
}

Student
Fields:
String firstName, lastName

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points)

Dieser Punktestand kann sich dann durch die Leistungen der Studenten verändern. Die
Methode givePoints(int points) von Student nimmt eine positive oder negative Anzahl Punkte,
welche dem Studenten verliehen werden. Erhaltene Punkte zählen nur, wenn der Student
einem Haus bereits zugewiesen wurde. Die erhaltenen Punkte werden dann den Häusern
zugeschrieben, welchen der Student zugewiesen ist. Dabei können die Punkte eines Hauses
nicht kleiner als 0 werden.

125

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner()
int points()

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht schon
in anderem Haus derselben Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

Student
Fields:
String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points) {
Für jedes House in houses,
House.updatePoinst(points)
}

Dieser Punktestand kann sich dann durch die Leistungen der Studenten verändern. Die
Methode givePoints(int points) von Student nimmt eine positive oder negative Anzahl Punkte,
welche dem Studenten verliehen werden. Erhaltene Punkte zählen nur, wenn der Student
einem Haus bereits zugewiesen wurde. Die erhaltenen Punkte werden dann den Häusern
zugeschrieben, welchen der Student zugewiesen ist. Dabei können die Punkte eines Hauses
nicht kleiner als 0 werden.

126

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner()
int points()

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht schon
in anderem Haus derselben Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

Student
Fields:
String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points) {
Für jedes House in houses,
House.updatePoinst(points)
}

Zusätzlich implementieren Sie die Methode winner() von School, welche das Haus mit den
meisten Punkten zurückgibt. Falls mehrere Häuser die gleiche Punktzahl haben, dann kann ein
beliebiges dieser Häuser zurückgegeben werden. Falls es kein Haus gibt, dann soll die
Methode eine IllegalArgumentException werfen. Und implementieren Sie die Methode points()
von School, welche die Summe der Punktestände der Häuser zurückgibt.

127

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner() {
Test houses not empty
return ein House mit max points
}
int points() {
return Summe der points aller House aus
houses
}

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht schon
in anderem Haus derselben Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

Student
Fields:
String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points) {
Für jedes House in houses,
House.updatePoinst(points)
}

Zusätzlich implementieren Sie die Methode winner() von School, welche das Haus mit den
meisten Punkten zurückgibt. Falls mehrere Häuser die gleiche Punktzahl haben, dann kann ein
beliebiges dieser Häuser zurückgegeben werden. Falls es kein Haus gibt, dann soll die
Methode eine IllegalArgumentException werfen. Und implementieren Sie die Methode points()
von School, welche die Summe der Punktestände der Häuser zurückgibt.

128

Jetzt Klassen implementieren

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner() {
Test houses not empty
return ein House mit max points
}
int points() {
return Summe der points aller House aus
houses
}

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht schon
in anderem Haus derselben Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

Student
Fields:
String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points) {
Für jedes House in houses,
House.updatePoinst(points)
}

129

Student
Fields:
String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String
lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points) {
Für jedes House in houses,
House.updatePoinst(points)
}

public class Student {

String firstName, lastName;

LinkedList<House> houses;

public Student(String firstName, String lastName) {}

public String firstName() {return null;}

public String lastName() {return null;}

public void givePoints(int points) {}

}

130

Student
Fields:
String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String
lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points) {
Für jedes House in houses,
House.updatePoinst(points)
}

public class Student {

String firstName, lastName;

LinkedList<House> houses;

public Student(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

houses = new LinkedList<House>();

}

public String firstName() {return null;}

public String lastName() {return null;}

public void givePoints(int points) {}

}

131

Student
Fields:
String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String
lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points) {
Für jedes House in houses,
House.updatePoinst(points)
}

public class Student {

String firstName, lastName;

LinkedList<House> houses;

public Student(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

houses = new LinkedList<House>();

}

public String firstName() {

return firstName;

}

public String lastName() {

return lastName;

}

public void givePoints(int points) {}

}

132

Student
Fields:
String firstName, lastName
List<House> houses

Konstruktor:
Student(String firstName, String
lastName)

Methods:
String firstName()
String lastName()
void givePoints(int points) {
Für jedes House in houses,
House.updatePoinst(points)
}

public class Student {

String firstName, lastName;

LinkedList<House> houses;

public Student(String firstName, String lastName) {

this.firstName = firstName;

this.lastName = lastName;

houses = new LinkedList<House>();

}

public String firstName() {

return firstName;

}

public String lastName() {

return lastName;

}

public void givePoints(int points) {

for(House curHouse: houses) {

curHouse.updatePoints(points);

}

}

} 133

public class House {

String name;

School school;

LinkedList<Student> students;

int points;

public String name() {return null;}

public int points() {return 0;}

public void assign(Student student) {}

}

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht
schon in anderem Haus derselben
Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

134

public class House {

String name;

School school;

LinkedList<Student> students;

int points;

public House(School school, String name) {

this.name = name;

this.school = school;

this.students = new LinkedList<Student>();

this.points = 0;

}

public String name() {return null;}

public int points() {return 0;}

public void assign(Student student) {}

}

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht
schon in anderem Haus derselben
Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

135

public class House {

String name;

School school;

LinkedList<Student> students;

int points;

public House(School school, String name) {

this.name = name;

this.school = school;

this.students = new LinkedList<Student>();

this.points = 0;

}

public String name() {return name;}

public int points() {return points;}

public void assign(Student student) {}

}

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht
schon in anderem Haus derselben
Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

136

public class House {

String name;

School school;

LinkedList<Student> students;

int points;

public House(School school, String name) {…}

public String name() {return name;}

public int points() {return points;}

public void assign(Student student){

if (student == null)

throw new IllegalArgumentException();

for (House curHouse: school.houses) {

for(Student curStu: curHouse.students) {

if (curStu == student)

throw new IllegalArgumentException();

}

}

students.add(student);

student.houses.add(this);

}

}

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht
schon in anderem Haus derselben
Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

137

public class House {

String name;

School school;

LinkedList<Student> students;

int points;

public House(School school, String name) {…}

public String name() {return name;}

public int points() {return points;}

public void assign(Student student){…}

public void updatePoints(int change) {

this.points = Math.max(0, this.points + change);

}

}

House
Fields:
String name
School school
List<Student> students
int points

Konstruktor:
House(String name , School school)

Methods:
String name()
int points()
void assign(Student student) {
Test student != null und Student nicht
schon in anderem Haus derselben
Schule
}
void updatePoints(int change){
points = max(0, points + change)
}

138

public class School {

LinkedList<House> houses;

public School () {

this.houses = new LinkedList<House>();

}

public House createHouse(String name) {return null;}

public House winner() {return null;}

public int points() {{return 0;}

}

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner() {
Test houses not empty
return ein House mit max points
}
int points() {
return Summe der points aller House
aus houses
}

139

public class School {

LinkedList<House> houses;

public School () {

this.houses = new LinkedList<House>();

}

public House createHouse(String name) {

if(name == null)

throw new IllegalArgumentException();

for(House h : houses) {

if(h.name().equals(name)) {

throw new IllegalArgumentException();

}

}

House newHouse = new House(this, name);

houses.add(newHouse);

return newHouse;

}

public House winner() {return null;}

public int points() {{return 0;}

}

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner() {
Test houses not empty
return ein House mit max points
}
int points() {
return Summe der points aller House
aus houses
}

140

public class School {

LinkedList<House> houses;

public School () {

this.houses = new LinkedList<House>();

}

public House createHouse(String name) {…}

public House winner() {

if (houses.size() == 0)

throw new IllegalArgumentException();

House maxHouse = houses.get(0);

for(House house: houses) {

if(house.points() > maxHouse.points())

maxHouse = house;

}

return maxHouse;

}

public int points() {{return 0;}

}

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner() {
Test houses not empty
return ein House mit max points
}
int points() {
return Summe der points aller House
aus houses
}

141

public class School {

LinkedList<House> houses;

public School () {

this.houses = new LinkedList<House>();

}

public House createHouse(String name) {…}

public House winner() {…}

public int points() {

int sum = 0;

for(House house: houses) {

sum += house.points;

}

return sum;

}

}

School
Fields:
List<House> houses

Konstruktor:
School()

Methods:
House createHouse(String name){
Test name != null und name für Schule
unique
}
House winner() {
Test houses not empty
return ein House mit max points
}
int points() {
return Summe der points aller House
aus houses
}

142

Scanner

Scanner: Methoden

144

Scanner

• next(): Wenn ein nächster String existiert im Scanner, dann wird dieser eingelesen und

zurückgegeben. Sonst gibt es eine NoSuchElementException.

• nextInt(): Wenn ein nächster Int existiert im Scanner, dann wird dieser eingelesen und

zurückgegeben. Sonst gibt es eine NoSuchElementException.

• nextBoolean(): Wenn ein nächster Boolean existiert im Scanner, dann wird dieser eingelesen und

zurückgegeben. Sonst gibt es eine NoSuchElementException.

• nextDouble(): Wenn ein nächster Double existiert im Scanner, dann wird dieser eingelesen und

zurückgegeben. Sonst gibt es eine NoSuchElementException.

Scanner: Methoden

145

Scanner

• hasNext(): Prüft ob es im Scanner einen nächsten String gibt.

• hasNextInt(): Prüft ob es im Scanner einen nächsten Int gibt.

• hasNextBoolean(): Prüft ob es im Scanner einen nächsten Boolean gibt.

• hasNextDouble(): Prüft ob es im Scanner einen nächsten Double gibt.

Scanner: LOCALE

146

Scanner

• Beim Einlesen von double kommt es zu Problemen…

• Im Deutschen werden Kommazahlen mit , statt mit . benutzt. Deshalb kann ein Scanner nicht 4.5
einlesen.

• Lösung: scanner.useLocale(Locale.US).

Kahoot zu Inheritance

Vorbesprechung

Aufgabe 1:
Loop-

Invarianten

Aufgabe 1:
Loop-

Invarianten

Aufgabe 2:
Database

Aufgabe 2:
Database

Aufgabe 2:
Database

Aufgabe 2:
Database

Aufgabe 2:
Database

Aufgabe 3:
Pyramide

Aufgabe 3:
Pyramide

Aufgabe 3:
Pyramide

Aufgabe 4:
Rechnungen

(erweitert)

Try / Catch

Try-Catch: Handlen von Exception

161

Try-Catch

• try-Block: Wir setzen Code, welcher eine Exception produzieren könnte, welche wir catchen möchten.

• catch-Block: Wir catchen eine Exception im catch-Block.

try {
// Code wird ausgeführt

} catch(ExceptionName e) {
// Hier wird die Exception gehandelt.

}

Nachbesprechung

Aufgabe 1:
Square

Grid

Aufgabe 1:
Square

Grid

Referenzen vs Objekte

Aufgabe 2:
Umkehrung

Aufgabe 3:
“KI” für

das
Ratespiel

Aufgabe 4:
Klassenrätsel

	Slide 1
	Slide 2: Organisatorisches
	Slide 3
	Slide 4: Inheritance
	Slide 5: Extends-Schlüsselwort
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57: Attributwahl
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70: Methodenwahl
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75
	Slide 76
	Slide 77
	Slide 78
	Slide 79
	Slide 80
	Slide 81: this und super
	Slide 82: Keywords bei Objekten
	Slide 83: Keywords bei Objekten
	Slide 84: Loop-Invariante
	Slide 85
	Slide 86
	Slide 87
	Slide 88
	Slide 89
	Slide 90
	Slide 91
	Slide 92
	Slide 93
	Slide 94
	Slide 95
	Slide 96
	Slide 97
	Slide 98
	Slide 99
	Slide 100
	Slide 101
	Slide 102
	Slide 103
	Slide 104
	Slide 105
	Slide 106
	Slide 107
	Slide 108
	Slide 109
	Slide 110
	Slide 111
	Slide 112
	Slide 113: Problem Solving: Klassen
	Slide 114: Hogwarts (2020 W11)
	Slide 115: Die Klassen können folgendermassen verwendet werden:
	Slide 116
	Slide 117
	Slide 118: Code-Skelett:
	Slide 119
	Slide 120
	Slide 121
	Slide 122
	Slide 123
	Slide 124
	Slide 125
	Slide 126
	Slide 127
	Slide 128
	Slide 129: Jetzt Klassen implementieren
	Slide 130
	Slide 131
	Slide 132
	Slide 133
	Slide 134
	Slide 135
	Slide 136
	Slide 137
	Slide 138
	Slide 139
	Slide 140
	Slide 141
	Slide 142
	Slide 143: Scanner
	Slide 144: Scanner: Methoden
	Slide 145: Scanner: Methoden
	Slide 146: Scanner: LOCALE
	Slide 147: Kahoot zu Inheritance
	Slide 148: Vorbesprechung
	Slide 149: Aufgabe 1: Loop-Invarianten
	Slide 150: Aufgabe 1: Loop-Invarianten
	Slide 151: Aufgabe 2: Database
	Slide 152: Aufgabe 2: Database
	Slide 153: Aufgabe 2: Database
	Slide 154: Aufgabe 2: Database
	Slide 155: Aufgabe 2: Database
	Slide 156: Aufgabe 3: Pyramide
	Slide 157: Aufgabe 3: Pyramide
	Slide 158: Aufgabe 3: Pyramide
	Slide 159: Aufgabe 4: Rechnungen (erweitert)
	Slide 160: Try / Catch
	Slide 161: Try-Catch: Handlen von Exception
	Slide 162: Nachbesprechung
	Slide 163: Aufgabe 1: Square Grid
	Slide 164: Aufgabe 1: Square Grid
	Slide 165: Aufgabe 2: Umkehrung
	Slide 166: Aufgabe 3: “KI” für das Ratespiel
	Slide 167: Aufgabe 4: Klassenrätsel

