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Organisatorisches

▪ Mein Name: Timo Stucki

▪ Bei Fragen: tistucki@student.ethz.ch

▪ Mails bitte mit «[EProg25]» im Betreff

▪ Neue Aufgaben: Dienstag Abend (im Normalfall)

▪ Abgabe der Übungen bis Dienstag Abend (23:59) Folgewoche

▪ Abgabe immer via Git

▪ Lösungen in separatem Projekt auf Git
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- 40 Punkte / 40 min Prüfung

=> 1 Punkt pro Minute

- Einfachere Aufgaben zuerst

(Invarianten und Klassen zuletzt,

während Lernphase darauf achten,

was einfach geht)

- Nach jeder Aufgabe kurz auf die Uhr schauen

- Falls möglich: Nur 0.75 min pro Punkt

und sonst weitergehen, 

am Ende den Rest machen

Gameplan für die schriftliche Prüfung



Interfaces



Klassen: Neural Network
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Object

Was macht neuronale Netzwerke aus?

• Nodes, Layers, Weights, etc.

• train-Methode: Mit dieser Methode 

können wir das neuronale Netzwerk

trainieren.

• predict-Methode: Mit dieser Methode 

können wir gegeben Inputs einen

Output generieren. 

Dafür eignet sich ein Interface!



Interfaces: Neural Network
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Object

Interfaces:

• Definieren was für ein Verhalten eine

Klasse haben muss, damit sie das 

Interface implementiert.

• Wie diese Methoden implementiert

werden, ist nicht Teil des Interfaces.

• Deshalb enthalten Interfaces auch

keine Attribute ausser Konstanten.

• Jedes Attribut ist public, static und 

final. 



Interfaces: Neural Network
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Object

Was macht neuronale Netzwerke aus?

• Nodes, Layers, Weights, etc.

• train-Methode: Mit dieser Methode 

können wir das neuronale Netzwerk

trainieren.

• predict-Methode: Mit dieser Methode 

können wir gegeben Inputs einen

Output generieren. 

Nicht Teil des 

Interface.



public interface Neural {

public void train();

public void predict(int[] inputs);

}

Interfaces: Neural Network
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Object



private interface Neural {

public void train();

public void predict(int[] inputs);

}

Interfaces: Neural Network
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Object
Darf man das?



private interface Neural {

public void train();

public void predict(int[] inputs);

}

Interfaces: Neural Network
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Object

Interfaces müssen einen public oder default 

modifier haben!



Interfaces: Neural Network
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Neural
Interfaces:

• Definieren was für ein Verhalten eine

Klasse haben muss, damit sie das 

Interface implementiert.

• Definieren wie Klassen einen Typ. 

Object



Interfaces: Neural Network
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Neural

Object

Geht das?

Klasse

Klasse

Multi-Inheritance:

• Eine Klasse kann höchstens von 

einer anderen Klasse erben.

• Eine Klasse kann aber mehrere

Interfaces implementieren.



Interfaces: ArrayList
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ArrayList:

• Implementiert: Serializable, Cloneable, Iterable, Collection, List, …

• Extends: AbstractList



Compiler-Fehler vs Exceptions



Zuerst Compile-Fehler,…

▪ Syntax überprüfen

▪ Keine Klammern, Semikolons vergessen?

▪ Existiert eine Methode mit diesem Namen und dieser Signatur?

▪ Typenkompatibilität überprüfen

▪ Compiler-Brille (später mehr)

▪ int i = 4.5;

▪ Präzisionsverlust: Der Compiler beschwert sich, explizites Casting erforderlich.

▪ String s = (String) new Integer(42);

▪ Kein Vererbungsverhältnis: Ein Cast zu Laufzeit würde nie funktionieren.
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… dann Exceptions

▪ Wir überprüfen das Programm auf Logikfehler

▪ ArithmeticException: Tritt auf bei fehlerhaften mathematischen 
Operationen (z.B. Division durch Null).

▪ NullPointerException: Entsteht, wenn auf ein null-Objekt zugegriffen wird.

▪ ClassCastException: Wird geworfen bei einem ungültigen Cast zwischen 
inkompatiblen Objekten.

▪ ArrayIndexOutOfBoundsException: Passiert, wenn auf einen ungültigen 
Index eines Arrays zugegriffen wird.

▪ NumberFormatException: Tritt auf, wenn versucht wird, einen String in 
eine Zahl umzuwandeln, der kein korrektes Zahlenformat hat.
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Exceptions können sehr spezifisch sein...
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Beispiel 1
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Beispiel 1 – Das sieht der Compiler 

20Vereinfachte Darstellung



Beispiel 1
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False

False



Beispiel 1 – Ohne Short-Circuiting

22

True Exception



Aufgabe 1
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Compile-Fehler

Exception



Aufgabe 2
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Compile-Fehler

Exception



Aufgabe 3
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Compile-Fehler

Exception



Aufgabe 4
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Compile-Fehler

Exception

Weder, noch!



Aufgabe 5
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Compile-Fehler

Exception



Aufgabe 6
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Compile-Fehler

Exception



Aufgabe 7
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Compile-Fehler

Exception



Aufgabe 8
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Compile-Fehler

Exception

Weder, noch!



instanceof
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konkretesObjekt instanceof Klasse
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konkretesObjekt instanceof Klasse

• Prüft, ob der dynamische Typ von konkretesObjekt eine Unterklasse von 

Klasse ist oder Klasse selbst und gibt true zurück, falls dies der Fall ist.

• Wenn konkretesObjekt null ist, gibt instanceof immer false zurück.

• wenn statischer Typ des Objekts und zu prüfende Klasse keine gemeinsame 

Vererbungshierarchie haben, erkennt Compiler, dass Prüfung sinnlos ist, und 

gibt einen Compile-Fehler zurück.



Katze

Tier

Hund

HuskyLöwe Tiger
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Statischer Typ

Dynamischer Typ

instanceof

Tier hd = new Hund()

true oder false?

hd instanceof Husky

hd instanceof Tier

Hund h2 = new Hund()

h2 instanceof Katze



Rename-Funktion in IntelliJ



Was kann Rename?

▪ Die Rename-Funktion in IntelliJ erlaubt es uns Klassen, 
Methode, Attribute, etc. umzubenennen.

▪ IntelliJ kann dabei auch nach Verwendungen des Namens 
suchen. Werden solche Verwendungen gefunden, können die 
Änderungen, die Sie z.B. am Methodennamen vornehmen, 
auch auf diese angewendet werden.
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Wie nutze ich «Rename»?
▪ Rechtsklick auf den 

Namen der Methode 
(oder Klasse)

▪ „Rename“ auswählen

▪ Den Namen verändern

▪ Mit Enter bestätigen

▪ Danach sind auch alle 
Aufrufe der Methode 
geändert
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Vorbesprechung



Aufgabe 1: 
Cyclic List



Aufgabe 1: 
Cyclic List



Aufgabe 2: 
Loop-

Invariante



Aufgabe 2: 
Loop-

Invariante



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 4: 
Contact 
Tracing



Aufgabe 4: 
Contact 
Tracing



Aufgabe 4: 
Contact 
Tracing



Aufgabe 4: 
Contact 
Tracing



Nachbesprechung



Aufgabe 1: 
Database



Aufgabe 2: 
Loop-

Invarianten



Aufgabe 2: 
Loop-

Invarianten



Aufgabe 3: 
Pyramide



Aufgabe 4: 
Rechnungen 

(erweitert)
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