
252-0027

Einführung in die Programmierung
Übungen

Woche 12: Interfaces, Exception

Timo Stucki
Departement Informatik
ETH Zürich



Organisatorisches

▪ Mein Name: Timo Stucki

▪ Bei Fragen: tistucki@student.ethz.ch

▪ Mails bitte mit «[EProg25]» im Betreff

▪ Neue Aufgaben: Dienstag Abend (im Normalfall)

▪ Abgabe der Übungen bis Dienstag Abend (23:59) Folgewoche

▪ Abgabe immer via Git

▪ Lösungen in separatem Projekt auf Git

2



- 40 Punkte / 40 min Prüfung

=> 1 Punkt pro Minute

- Einfachere Aufgaben zuerst

(Invarianten und Klassen zuletzt,

während Lernphase darauf achten,

was einfach geht)

- Nach jeder Aufgabe kurz auf die Uhr schauen

- Falls möglich: Nur 0.75 min pro Punkt

und sonst weitergehen, 

am Ende den Rest machen

Gameplan für die schriftliche Prüfung



Interfaces



Klassen: Neural Network

5

Object

Was macht neuronale Netzwerke aus?

• Nodes, Layers, Weights, etc.

• train-Methode: Mit dieser Methode 

können wir das neuronale Netzwerk

trainieren.

• predict-Methode: Mit dieser Methode 

können wir gegeben Inputs einen

Output generieren. 

Dafür eignet sich ein Interface!



Interfaces: Neural Network

6

Object

Interfaces:

• Definieren was für ein Verhalten eine

Klasse haben muss, damit sie das 

Interface implementiert.

• Wie diese Methoden implementiert

werden, ist nicht Teil des Interfaces.

• Deshalb enthalten Interfaces auch

keine Attribute ausser Konstanten.

• Jedes Attribut ist public, static und 

final. 



Interfaces: Neural Network

7

Object

Was macht neuronale Netzwerke aus?

• Nodes, Layers, Weights, etc.

• train-Methode: Mit dieser Methode 

können wir das neuronale Netzwerk

trainieren.

• predict-Methode: Mit dieser Methode 

können wir gegeben Inputs einen

Output generieren. 

Nicht Teil des 

Interface.



public interface Neural {

public void train();

public void predict(int[] inputs);

}

Interfaces: Neural Network

8

Object



private interface Neural {

public void train();

public void predict(int[] inputs);

}

Interfaces: Neural Network

9

Object
Darf man das?



private interface Neural {

public void train();

public void predict(int[] inputs);

}

Interfaces: Neural Network

10

Object

Interfaces müssen einen public oder default 

modifier haben!



Interfaces: Neural Network

11

Neural
Interfaces:

• Definieren was für ein Verhalten eine

Klasse haben muss, damit sie das 

Interface implementiert.

• Definieren wie Klassen einen Typ. 

Object



Interfaces: Neural Network

12

Neural

Object

Geht das?

Klasse

Klasse

Multi-Inheritance:

• Eine Klasse kann höchstens von 

einer anderen Klasse erben.

• Eine Klasse kann aber mehrere

Interfaces implementieren.



Interfaces: ArrayList

13

ArrayList:

• Implementiert: Serializable, Cloneable, Iterable, Collection, List, …

• Extends: AbstractList



Compiler-Fehler vs Exceptions



Zuerst Compile-Fehler,…

▪ Syntax überprüfen

▪ Keine Klammern, Semikolons vergessen?

▪ Existiert eine Methode mit diesem Namen und dieser Signatur?

▪ Typenkompatibilität überprüfen

▪ Compiler-Brille (später mehr)

▪ int i = 4.5;

▪ Präzisionsverlust: Der Compiler beschwert sich, explizites Casting erforderlich.

▪ String s = (String) new Integer(42);

▪ Kein Vererbungsverhältnis: Ein Cast zu Laufzeit würde nie funktionieren.

15



… dann Exceptions

▪ Wir überprüfen das Programm auf Logikfehler

▪ ArithmeticException: Tritt auf bei fehlerhaften mathematischen 
Operationen (z.B. Division durch Null).

▪ NullPointerException: Entsteht, wenn auf ein null-Objekt zugegriffen wird.

▪ ClassCastException: Wird geworfen bei einem ungültigen Cast zwischen 
inkompatiblen Objekten.

▪ ArrayIndexOutOfBoundsException: Passiert, wenn auf einen ungültigen 
Index eines Arrays zugegriffen wird.

▪ NumberFormatException: Tritt auf, wenn versucht wird, einen String in 
eine Zahl umzuwandeln, der kein korrektes Zahlenformat hat.

16



Exceptions können sehr spezifisch sein...

17



18



Beispiel 1

19



Beispiel 1 – Das sieht der Compiler 

20Vereinfachte Darstellung



Beispiel 1

21

False

False



Beispiel 1 – Ohne Short-Circuiting

22

True Exception



Aufgabe 1

23

Compile-Fehler

Exception



Aufgabe 2

24

Compile-Fehler

Exception



Aufgabe 3

25

Compile-Fehler

Exception



Aufgabe 4

26

Compile-Fehler

Exception

Weder, noch!



Aufgabe 5

27

Compile-Fehler

Exception



Aufgabe 6

28

Compile-Fehler

Exception



Aufgabe 7

29

Compile-Fehler

Exception



Aufgabe 8

30

Compile-Fehler

Exception

Weder, noch!



instanceof



32

konkretesObjekt instanceof Klasse



33

konkretesObjekt instanceof Klasse

• Prüft, ob der dynamische Typ von konkretesObjekt eine Unterklasse von 

Klasse ist oder Klasse selbst und gibt true zurück, falls dies der Fall ist.

• Wenn konkretesObjekt null ist, gibt instanceof immer false zurück.

• wenn statischer Typ des Objekts und zu prüfende Klasse keine gemeinsame 

Vererbungshierarchie haben, erkennt Compiler, dass Prüfung sinnlos ist, und 

gibt einen Compile-Fehler zurück.



Katze

Tier

Hund

HuskyLöwe Tiger

34

Statischer Typ

Dynamischer Typ

instanceof

Tier hd = new Hund()

true oder false?

hd instanceof Husky

hd instanceof Tier

Hund h2 = new Hund()

h2 instanceof Katze



Rename-Funktion in IntelliJ



Was kann Rename?

▪ Die Rename-Funktion in IntelliJ erlaubt es uns Klassen, 
Methode, Attribute, etc. umzubenennen.

▪ IntelliJ kann dabei auch nach Verwendungen des Namens 
suchen. Werden solche Verwendungen gefunden, können die 
Änderungen, die Sie z.B. am Methodennamen vornehmen, 
auch auf diese angewendet werden.

36



Wie nutze ich «Rename»?
▪ Rechtsklick auf den 

Namen der Methode 
(oder Klasse)

▪ „Rename“ auswählen

▪ Den Namen verändern

▪ Mit Enter bestätigen

▪ Danach sind auch alle 
Aufrufe der Methode 
geändert

37



Vorbesprechung



Aufgabe 1: 
Cyclic List



Aufgabe 1: 
Cyclic List



Aufgabe 2: 
Loop-

Invariante



Aufgabe 2: 
Loop-

Invariante



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 4: 
Contact 
Tracing



Aufgabe 4: 
Contact 
Tracing



Aufgabe 4: 
Contact 
Tracing



Aufgabe 4: 
Contact 
Tracing



Nachbesprechung



Aufgabe 1: 
Database



Aufgabe 2: 
Loop-

Invarianten



Aufgabe 2: 
Loop-

Invarianten



Aufgabe 3: 
Pyramide



Aufgabe 4: 
Rechnungen 

(erweitert)


	Slide 1
	Slide 2: Organisatorisches
	Slide 3: Gameplan für die schriftliche Prüfung
	Slide 4: Interfaces
	Slide 5: Klassen: Neural Network
	Slide 6: Interfaces: Neural Network
	Slide 7: Interfaces: Neural Network
	Slide 8: Interfaces: Neural Network
	Slide 9: Interfaces: Neural Network
	Slide 10: Interfaces: Neural Network
	Slide 11: Interfaces: Neural Network
	Slide 12: Interfaces: Neural Network
	Slide 13: Interfaces: ArrayList
	Slide 14: Compiler-Fehler vs Exceptions
	Slide 15: Zuerst Compile-Fehler,…
	Slide 16: … dann Exceptions
	Slide 17: Exceptions können sehr spezifisch sein...
	Slide 18
	Slide 19: Beispiel 1
	Slide 20: Beispiel 1 – Das sieht der Compiler 
	Slide 21: Beispiel 1
	Slide 22: Beispiel 1 – Ohne Short-Circuiting
	Slide 23: Aufgabe 1
	Slide 24: Aufgabe 2
	Slide 25: Aufgabe 3
	Slide 26: Aufgabe 4
	Slide 27: Aufgabe 5
	Slide 28: Aufgabe 6
	Slide 29: Aufgabe 7
	Slide 30: Aufgabe 8
	Slide 31: instanceof
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Rename-Funktion in IntelliJ
	Slide 36: Was kann Rename?
	Slide 37: Wie nutze ich «Rename»?
	Slide 38: Vorbesprechung
	Slide 39: Aufgabe 1: Cyclic List
	Slide 40: Aufgabe 1: Cyclic List
	Slide 41: Aufgabe 2: Loop-Invariante
	Slide 42: Aufgabe 2: Loop-Invariante
	Slide 43: Aufgabe 3: Expression Evaluator
	Slide 44: Aufgabe 3: Expression Evaluator
	Slide 45: Aufgabe 3: Expression Evaluator
	Slide 46: Aufgabe 3: Expression Evaluator
	Slide 47: Aufgabe 4: Contact Tracing
	Slide 48: Aufgabe 4: Contact Tracing
	Slide 49: Aufgabe 4: Contact Tracing
	Slide 50: Aufgabe 4: Contact Tracing
	Slide 51: Nachbesprechung
	Slide 52: Aufgabe 1: Database
	Slide 53: Aufgabe 2: Loop-Invarianten
	Slide 54: Aufgabe 2: Loop-Invarianten
	Slide 55: Aufgabe 3: Pyramide
	Slide 56: Aufgabe 4: Rechnungen (erweitert)

