252-0027

Einflihrung in die Programmierung
Ubungen

Woche 12: Interfaces, Exception

Timo Stucki
Departement Informatik
ETH Ziirich

Organisatorisches

= Mein Name: Timo Stucki
= Bei Fragen: tistucki@student.ethz.ch
Mails bitte mit «[EProg25]» im Betreff
= Neue Aufgaben: Dienstag Abend (im Normalfall)
= Abgabe der Ubungen bis Dienstag Abend (23:59) Folgewoche

= Abgabe immer via Git

Losungen in separatem Projekt auf Git

Gameplan fur die schriftliche-Prufung

- 40 Punkte / 40 min Prufung
=> 1 Punkt pro Minute

- Einfachere Aufgaben zuerst
(Invarianten und Klassen zule
wahrend Lernphase darauf achten,
was einfach geht) S—

- Nach jeder Aufgabe kurz auf die Uhr schauen ~

- Falls moglich: Nur 0.75 min pro Punkt
und sonst weitergehen,
am Ende den Rest machen

\

Interfaces

Klassen: Neural Network

Object

Was macht neuronale Netzwerke aus?

* Nodes, Layers, Weights, etc.

= = = + train-Methode: Mit dieser Methode
Qe konnen wir das neuronale Netzwerk
e trainieren.
e &
s ‘
N . .

predict-Methode: Mit dieser Methode
konnen wir gegeben Inputs einen
Output generieren.

Dafur eignet sich ein Interface!

Interfaces: Neural Network

Object

Interfaces:

 Definieren was fir ein Verhalten eine
Klasse haben muss, damit sie das

= = Interface implementiert.
:E?
:é e « Wie diese Methoden implementiert
¢4 . . .
‘ . werden, ist nicht Teil des Interfaces.

+ Deshalb enthalten Interfaces auch
keine Attribute ausser Konstanten.

* Jedes Attribut ist public, static und
final.

Interfaces: Neural Network

Object

Was macht neuronale Netzwerke aus?

. Nicht Teil des
* Nodes, La ; S, efc. Interface.
== * train-Methode: Mit dieser Methode
o konnen wir das neuronale Netzwerk
:é e trainieren.
¢ i
t t

predict-Methode: Mit dieser Methode
konnen wir gegeben Inputs einen
Output generieren.

Interfaces: Neural Network

Neural {
void train();

void predict(int[] inputs);

Interfaces: Neural Network

Darf man das?

Neural {

void train();

void predict(int[] inputs);

Interfaces: Neural Network

Interfaces mussen einen public oder default
modifier haben!
s Neural {
void train();

void predict(int[] inputs);

Interfaces: Neural Network

Object
TR
Interfaces:
Neural o/o”\ob |
{:b & E‘Hb * Definieren was fur ein Verhalten eine

Klasse haben muss, damit sie das
Interface implementiert.

» Definieren wie Klassen einen Typ.

|

R YYYY Y
s NS

Interfaces: Neural Network

Object
Global node (@)

Neural e %0 | Klasse
Nodes O(O_O,bﬂp dO—o

Multi-Inheritance:

 Eine Klasse kann hochstens von
einer anderen Klasse erben.

 Eine Klasse kann aber mehrere
Interfaces implementieren.

Interfaces: ArrayList

Module java.base
Package java.util

Class ArraylList<E>

java.lang.Object
java.util.AbstractCollection<E>
java.util.AbstractList<E>
java.util.ArrayList<E>

Type Parameters:

E - the type of elements in this list

All Implemented Interfaces:

Serializable, Cloneable, Iterable<E>, Collection<E>, List<E>, RandomAccess, SequencedCollection<E>

ArrayList:
 Implementiert: Serializable, Cloneable, Iterable, Collection, List, ...

e Extends: AbstractList

Compiler-Fehler vs Exceptions

Zuerst Compile-Fehler,...

= Syntax Uberprufen

= Keine Klammern, Semikolons vergessen?
= Existiert eine Methode mit diesem Namen und dieser Signatur?
= Typenkompatibilitat Gberprifen
= Compiler-Brille (spater mehr)
= int 1 = 4.5;
= Prazisionsverlust: Der Compiler beschwert sich, explizites Casting erforderlich.

= String s = (String) new Integer(42);

= Kein Vererbungsverhaltnis: Ein Cast zu Laufzeit wiirde nie funktionieren.

... dann Exceptions

Wir Uberprifen das Programm auf Logikfehler

ArithmeticException: Tritt auf bei fehlerhaften mathematischen
Operationen (z.B. Division durch Null).

NullPointerException: Entsteht, wenn auf ein null-Objekt zugegriffen wird.

ClassCastException: Wird geworfen bei einem ungiltigen Cast zwischen
inkompatiblen Objekten.

ArrayindexOutOfBoundsException: Passiert, wenn auf einen ungtltigen
Index eines Arrays zugegriffen wird.

NumberFormatException: Tritt auf, wenn versucht wird, einen String in
eine Zahl umzuwandeln, der kein korrektes Zahlenformat hat.

Exceptions konnen sehr spezifisch sein...

OverheatedException Exception {

OverheatedException(String message) {

(message) ;

Machine {

temperature;

Machine(temperature) {

.temperature = temperature;

checkTemperature() OverheatedException {
(temperature > 100) {

OverheatedException("Machine is overheated!");

Beispiel 1

MyClass {
void
9;
H

(String[] args){

((a>0) & (b / a > 1));

19

Beispiel 1 — Das sieht der Compiler

MyClass {

void (String[] args){

int;
int;

((int > int) && (int / int > int));

Vereinfachte Darstellung

20

Beispiel 1

False

MyClass {

void

(String[] args){

21

Beispiel 1 — Ohne Short-Circuiting

MyClass {

main(String[] args){
a=@0;
b =5;

System.out.println((b !'=0) & (b / a > 1));

_'_l

Exception

22

Aufgabe 1

Compile-Fehler

Exception

X

23

Aufgabe 2

Compile-Fehler 4

Exception

result = (

24

Aufgabe 3

String num

number

result

| 123 n ;

() num;

= 2 % number:

Compile-Fehler

Exception

X

25

Aufgabe 4

d =10.9;
x = () d;

System.out.println("x is:

Compile-Fehler

Exception

Weder, noch!

26

Integer

X; 1 <y; i++) {

res = res / (x - y);

y=—i

Compile-Fehler

Exception

pod

A

27

10.5;
) (X sk ||2||),.

Compile-Fehler

Exception

X

28

Aufgabe 7

Compile-Fehler

Integer a =
b = 5; Exception e

result = a + b;

29

Aufgabe 8

Compile-Fehler

a =5;

b =2.0: Exception

result = a / b+ ax (b-1);

Weder, noch!

30

instanceof

konkretesObjekt instanceof Klasse

32

konkretesObjekt instanceof Klasse

Praft, ob der dynamische Typ von konkretesObjekt eine Unterklasse von
Klasse ist oder Klasse selbst und gibt true zurtck, falls dies der Fall ist.

Wenn konkretesObjekt null ist, gibt instanceof immer false zuruck.

wenn statischer Typ des Objekts und zu prufende Klasse keine gemeinsame
Vererbungshierarchie haben, erkennt Compiler, dass Prifung sinnlos ist, und
gibt einen Compile-Fehler zurtck.

instanceof
true oder false?

Tier hd = new ()

instanceof Husky

instanceof Tier

Hund

Hund h2 = new ()

instanceof Katze

@ @ Husky Statischer Typ

34

Rename-Funktion in Intellil

Was kann Rename?

= Die Rename-Funktion in IntelliJ erlaubt es uns Klassen,
Methode, Attribute, etc. umzubenennen.

= |ntelliJ kann dabei auch nach Verwendungen des Namens
suchen. Werden solche Verwendungen gefunden, konnen die
Anderungen, die Sie z.B. am Methodennamen vornehmen,
auch auf diese angewendet werden.

Wie nutze ich «<Rename»?

public static void main(String[] args) { = REChtSk“Ck an den
eispielMethode();
S Namen der Methode
¥ (oder Klasse)

public static void beispielMethode

O Show Context Acti Strg+. 't .
System.out.println("Hallo!"); - ronemeaactons " . ” Rename auswahlen
} [E) Paste Strg+V
Copy / Paste Special > .e
|
Column Selection Mode Alt+Umschalt+Einfg Den Na men Ve ra ndern
Find Usages Alt+Umschalt+F12 . e . e
. " Mit Enter bestatigen
Folding >

= Danach sind auch alle
B Aufrufe der Methode

Refactor >

Generate... Alt+Einfg geé n d e rt

[> Run 'Test main(y' Stra+lImschalt+F10

Vorbesprechung

Bisher haben Sie einfach verkettete Listen gesehen. Zusitzlich wurde ein IntList-Interface
eingefiihrt (siehe Anhang), welches die Methoden der Liste abstrahiert.

a) In dieser Aufgabe iiben Sie den Umgang mit Interfaces. Die Klasse LinkedIntList hat alle
Methoden, welche vom Interface IntList gefordert werden. Implementieren Sie dann eine
Methode ListUtil.addMin(IntList x), welche der Liste x die kleinste Zahl anhingt, wel-

che in x enthalten ist. Implementieren Sie zuletzt die Methode ListUtil.addMinImpl (LinkedIntList
A u fg a b e 1 L x), welche ebenfalls der Liste x die kleinste Zahl anhéngt, welche in x enthalten ist, aber dafiir
. die Methode ListUtil.addMin verwenden soll. Sie diirfen fiir beide Methoden annehmen,
dass die iibergebene Liste mindestens ein Element enthalt.

u u
Cyc I I c L I St b) In dieser Aufgabe implementieren Sie eine neue Variante einer Liste, die zyklische Liste,

welche ebenfalls das IntList-Interface implementiert. Zyklische Listen sind dhnlich zu
einfach verketteten Listen mit dem Unterschied, dass das next-Feld der letzten Node der
Liste, falls es einen letzten Knoten gibt, auf den ersten Node der Liste zeigt. Die Knoten der
Liste bilden also einen Zyklus. Zusétzlich hat die Liste kein Feld fiir den ersten Knoten
der Liste, da dies unnotig ist. Das Feld last, das auf den letzten Knoten zeigt, ist nach wie
vor vorhanden. Abbildung 1 zeigt eine solche zyklische Listen mit den Elementen 1, 3, 3,
7. Implementieren Sie die zyklische Liste in der Datei “CircularLinkedIntListjava”. Einige
Tests fiir die Liste finden Sie in IntListTest.

39

Aufgabe 1:

Cyclic List

CircularLinkedIntlList
last :
size : 4

IntNode IntNode IntNode IntNode
value: i/’ value: i/—.value: i/—- value: 7
next : next : next : neff_i-::::>

Abbildung 1: Zyklische Liste mit Werten 1, 3, 3, 7.

40

Aufgabe 2:

Loop-
Invariante

Gegeben den Pre- und Postcondition formulieren Sie eine Loop-Invariante in der Datei “Loopln-
variante.txt” fiir die folgenden Programme.

1. Um die Loop-Invariante einfacher schreiben zu kénnen, diirfen Sie contains(arr, c)
benutzen. Hier sagt uns contains(arr, c), ob der Char ¢ im Array arr enhalten ist.
Ebenfalls kénnen Sie subarray(arr, i) benutzen, welches eine Kopie vom Array arr von
Index 0 bis und mit i darstellt. Alternativ konnte man auch formale Notation benutzen, in
dem man mit Quantoren arbeitet.

void erase(char[] arr, char c) {
// Precondition: arr != null && c != ’x’
int i = 0;
// Loop-Invariante:
while (i != arr.length) {
if (arr[i] == ¢) {
arr([i] = ’x’;

+

i+

// Postcondition: !contains(arr, c)

41

Aufgabe 2:

Loop-
Invariante

2. public int compute(String s, char c¢) {
int x;
int 1i;

x = 0;
_1;

// Loop-Invariante:
while (x < s.length() && i < 0) {
if (s.charAt(x) == c¢) {
i=x;
}
x

=x + 1;

// Postcondition:
/7 (0 <=1 & i < s.length() &% s.charAt(i) == c) || count(s, c) ==
return i;

}

Die Methode count (String s, char c¢) gibt zuriick wie oft der Character ¢ im String s vor-
kommt. Schreiben Sie die Loop Invariante in die Datei “Looplnvariante.txt”. Achtung: Die Aufgabe
ist schwerer als es zuerst scheint. Uberpriifen Sie Ihre Losung sorgfaltig.

42

In dieser und in folgenden Ubungen werden Sie eine Reihe von Programmen schreiben, wel-
che andere Programme interpretieren, kompilieren oder (in kompilierter Form) ausfithren. Die
Programmiersprachen definieren wir selber.

Als Einstieg schreiben Sie ein Programm, welches mathematische Ausdriicke (expressions)
auswertet. Die Ausdriicke bestehen aus Zahlen, Variablen, Operatoren wie + oder — und einfachen
Funktionen wie sin() oder cos(). Die genaue Syntax fiir diese Ausdriicke finden Sie als EBNF-
Beschreibung in Abbildung 2.

digit

Aufgabe 3:

of1]...1]9
A|lB|...|Z]a|b]|... |z
digit { digit } [. digit { digit }]

=
=
—_
E = var <= char { char }
xp ress I O n func <= char { char } (
—_
=
=

i

Evaluator .

close

H=x]/]"
(
)

atom < num | var
term < open expr close
expr <= term [op term |

atom

func expr close

Abbildung 2: EBNF-Beschreibung von expr
Ein Programm, das Ausdriicke auswertet, muss natiirlich entscheiden, ob eine gegebene Zei-

chenkette iiberhaupt ein giiltiger Ausdruck ist*. Das nennt man parsen und ein solches Programm
heisst Parser. Aus einer EBNF-Beschreibung wie dieser kann man einfach einen Parser erstellen®:

43

Aufgabe 3:

Expression

Evaluator

/* checks if the next tokens form a valid term */
void parseTerm(...) {
if(next token is a "open") {
consume "open" token
// check if the next tokens are a valid expr:
parseExpr(...);
check whether next token is a "close" & consume
}
else if(next token is a "func") {
consume "func" token
// check if the next tokens are a valid expr:
parseExpr(...);
check whether next token is a "close" & consume

}

else {
// check if the tokens are a valid atom:
parseAtom(...);

1

Abbildung 3: Parser-Methode fiir term

* Regeln werden zu Methoden.

* Alternativen werden zu if-Anweisungen.

/* evaluate the next tokens as a term */

double evalTerm(...) {

if(next token is a "open") {
consume "open" token
double val = evalExpr(...);
check whether next token is a "close" & consume
return val;
}
else if(next token is a "func") {
consume "func" token
double arg = evalExpr(...);
check whether next token is a "close" & consume
double result = apply function to arg
return result;

}
else {

return evalAtom(...);
}

Abbildung 4: Evaluator-Methode fiir term

¢ Regeln auf der RHS werden zu Methodenaufrufen.

44

Aufgabe 3:

Expression
Evaluator

Man unterscheidet dabei zwischen zwei Arten von Regeln: Parser-Regeln und Tokenizer-Regeln.
Zuerst teilt ein Tokenizer die Zeichenkette aufgrund der Tokenizer-Regeln in eine Reihe von Tokens
auf. In unserer EBNF-Beschreibung sind die Tokenizer-Regeln rot dargestellt. Die grauen Regeln
werden zwar intern vom Tokenizer verwendet, aber erzeugen keine eigenen Tokens. Zum Beispiel
erzeugt die Zeichenkette “sin(1 + x) * 3.14" die folgende Reihe von Tokens:

func:sin(num:1 op:+ var:x close:) op:* num:3.14

Danach entscheidet der Parser aufgrund der Parser-Regeln (oben in Schwarz dargestellt), ob
eine solche Reihe von Tokens einen giiltigen Ausdruck darstellt. Abbildung 3 zeigt, wie die
Parser-Methode fiir term aussehen konnte.

a) In der Ubungsvorlage finden Sie eine Tokenizer-Implementation, eine Vorlage fiir den
ExprParser und eine EvaluatorApp mit einer main()-Methode. Diese parst die vom Benutzer
eingegebenen Zeichenketten und gibt an, ob sie giiltige Ausdriicke sind. Wenn der Benutzer
“exit” eingibt, terminiert das Programm. Ihre Aufgabe ist es, den ExprParser zu schreiben.

Erstellen Sie in der schon vorgegebenen parse (String)-Methode eine Tokenizer-Instanz. Die
Methoden des Tokenizers sind denen der Scanner-Klasse nachempfunden. Sie konnen also
die hasNext*()-Methoden verwenden, um zu priifen, welche Art von Token als ndchstes
kommt, und die next* ()-Methoden, um Tokens zu “konsumieren”. Schreiben Sie die notigen
parsex(...)-Methoden, eine fiir jede Parser-Regel. Die erste lhrer parse*(...)-Methoden
rufen Sie von parse (String) aus auf. Diese Methoden sollen eine EvaluationException mit
einer sinnvollen Fehlermeldung werfen, falls die Zeichenkette kein gtiltiger Ausdruck ist. Falls
z.B. nach “(” und einer expr das Token “10” statt “)” folgt, konnte die Fehlermeldung lauten:

Syntax error: unexpected token ’10°, expected ’)’

45

Aufgabe 3:

Expression
Evaluator

b) Um aus dem ExprParser einen ExprEvaluator zu machen, kann man die Methoden so dandern,

dass sie im selben Zug das Resultat berechnen. Jede Methode tiberpriift dann nicht nur, ob die
ndchsten Tokens der Regel entsprechen, sondern gibt auch gleich den Wert des entsprechenden
Ausdruck-Teils zurtick. Dies sehen Sie in Abbildung 4.

Benennen Sie die Klasse und die Methoden um?, so dass sie die neue Funktionalitit widerspie-
geln. Nun konnen Sie entscheiden: Erstens, welche Funktionen sind erlaubt? Fiir Aufgabe ??
sollten Sie mindestens sin(), cos() und tan() unterstiitzen, aber auch andere Funktionen wie
abs() oder log() kéinnten spéter Spass machent. Zweitens kénnen Sie entscheiden, wie Sie mit
Variablen umgehen. Sie sollten mindestens eine “x”-Variable unterstiitzen, und wir empfehlen,
dass Sie den Wert dafiir dem ExprEvaluator-Konstruktor iibergeben. Sie sollten eine Exception
werfen, falls unbekannte Funktionen oder Variablen in einem Ausdruck vorkommen.

Am Schluss sollte die EvaluatorApp das Resultat der eingegebenen Ausdriicke ausgegeben,
statt nur zu sagen, ob sie giiltig sind. Wenn Sie wollen, kénnen Sie dem Benutzer auch die
Moglichkeit geben, Werte fiir Variablen zu definieren.

(AN UNMATZHED LEFT PARENTHESIS
(REATES AN UNRESOLVED TENSION
THAT WILL STRY WITH You ALL DAY,

xked: (by Randall Munroe (CC BY-NC 2.5)

46

Aufgabe 4:

Contact
Tracing

In dieser Aufgabe implementieren Sie eine Contact-Tracing-Applikation, welche es ermoglichen
soll, Kontakte wahrend eines Virus-Ausbruches nachzuverfolgen. Thre Implementierung soll
zunichst Begegnungen zwischen verschiedenen Person-Instanzen anonym protokollieren, so dass
bei einem positivem Test die Benachrichtigung aller Personen moglich ist, die direkt oder indirekt
mit einer positiv getesteten Person in Kontakt standen.

Anonyme Begegnungen. Um Anonymitit zu gewéhrleisten, diirfen zwei Personen A und B bei
einer Begegnung lediglich anonyme Integer-IDs austauschen, ohne dabei die Identitat der jeweils
anderen Person aufzudecken. Beide Personen speichern hierbei sowohl die eigene ID als auch
die ID der anderen Person. Bei der positiven Testung von A kann dann mithilfe der anonymen
IDs, die A genutzt hat, festgestellt werden, ob B einer dieser IDs begegnet ist. Um zu vermeiden,
dass wiederkehrende IDs die Identifikation einer Person iiber mehrere Begegnungen hinweg
ermoglichen, benutzt jede Person fiir jede Begegnung frische IDs, welche iiber eine zentrale Klasse
ContactTracer vergeben werden. Frisch bedeutet hierbei, dass eine ID zuvor noch nie bei einer
Begegnung verwendet wurde.

Direkte und indirekte Kontakte. Nachdem eine Reihe an Begegnungen protokolliert wurden,
wird eine oder mehrere Personen positiv getestet. Mit dem erfassten Netzwerk aus Begegnungen
soll Thre Applikation dann zwei verschiedene Arten an Kontaktpersonen bestimmlten:
* Als direkfe Kontakte gelten alle Personen, die eine Begegnung mit einer positiv getesteten
Person hatten.

* Als indirekte Kontakte hingegen gelten alle Personen, die zwar selbst keine Begegnung
mit einer positiv getesteten Person hatten, jedoch Kontakt mit mindestens einer anderen
Person, welche als direkter Kontakt gilt, hatten. Indirekte Kontakte mit mehr als einer
Zwischenperson miissen Sie dabei nicht beriicksichtigen.

Sie diirfen dabei annehmen, dass zundchst alle Begegnungen erfasst werden und erst dann
Personen positiv getestet werden. Nach der ersten positiven Testung finden keine weiteren
Begegnungen mehr statt.

47

Aufgabe 4:

Contact
Tracing

Benachrichtigungen. Da nicht alle Personen gleichermassen gefahrdet sind, soll Thre Applika-
tion die Benachrichtigung der Kontaktpersonen vom Alter, der Art des Kontaktes, sowie dem
Testergebnis der jeweiligen Kontaktperson abhidngig machen. Dabei soll eine der drei Warnstufen
Keine Benachrichtiqung, Low-Risk-Benachrichtiqung oder High-Risk-Benachrichtigung ausgesprochen
werden. Zu Beginn haben alle Personen die Standard-Warnstufe Keine Benachrichtigung und
gelten als negativ getestet. Davon ausgehend sollen nach jedem registrierten positiven Test die
zugehorigen Kontaktpersonen wie folgt benachrichtigen werden:

Testergebnis der Kontaktperson | Alter der Kontaktperson || Direkter Kontakt | Indirekter Kontakt
Positiv - Keine Benachr. Keine Benachr.
Negativ < 60 Jahre alt High-Risk Keine Benachr.
Negativ > 6o Jahre alt High-Risk Low-Risk

Eine negativ getestete Person, die hichstens 60 Jahre alt ist und die nur in indirektem Kontakt
zu einer positiven Person stand, soll beispielsweise keine Benachrichtigung erhalten (Reihe 2).
Eine negativ getestete Person {iber 60 Jahre hingegen soll als indirekter Kontakt eine Low-Risk-
Benachrichtigung erhalten (Reihe 3).

Wenn mehrere Personen positiv getestet werden, soll IThre Applikation immer die hichste
geltende Warnstufe fiir die anderen, negativ getesteten Personen berechnen. Dabei ist die Ordnung
der Warnstufen wie folgt definiert: Keine Benachrichtiqung < Low-Risk Benachrichtiqung < High-
Risk Benachrichtigung. Positiv getestete Personen hingegen sollen immer die Warnstufe Keine
Benachrichtigung erhalten. Im Allgemeinen diirfen Sie zudem annehmen, dass eine Person, die
einmal positiv getestet wurde, fiir den Rest der Laufzeit Threr Applikation als positiv getestet gilt.

48

Implementierung. Erweiteren Sie den vorgegebenen Code fiir die Klasse ContactTracer und
das Interface Person wie folgt, um die Contact-Tracing-Applikation umzusetzen:
Implementieren Sie das Interface Person mit den folgenden public Methoden:

* Person.getUsedIds(). Diese Methode gibt die Liste aller IDs zurtick (List<Integer>),
die fur diese Person als frische ID verwendet wurden, um eine Begegnung zu proto-
kollieren. Nach Hinzufiigen einer 1D in diese Liste muss dieselbe ID in die jeweilige
Person.getSeenIds ()-Liste des Gegem’.lbers eingetragen sein.

A f b 4 0 * Person.getSeenIds(). Diese Methode gibt die Liste aller IDs zuriick (List<Integer>),
u g a e u die diese Person als die frische ID des jeweiligen Gegeniibers bei einer Begegnung pro-
tokolliert hat. Nach Hinzufiigen einer ID in diese Liste muss dieselbe ID in die jeweilige

‘ o n t a ct Person.getUsedIds ()-Liste des Gegeniibers eingetragen sein.

. * Person.getNotification(). Diese Methode gibt den aktuellen Benachrichtigungsstatus
Tra c I n g der Person zuriick. Der Riickgabewert soll vom Enum-Typ NotificationType sein, welcher

vorgegeben ist und die drei moglichen Warnstufen modelliert. NotificationType ist im
Interface Person definiert und enthilt die drei Werte NoNotification (keine Benachrich-
tigung), LowRiskNotification (Low-Risk-Benachrichtigung) und HighRiskNotification
(High-Risk-Benachrichtigung).

® Person.setTestsPositively(). Diese Methode wird aufgerufen, um eine Person als po-
sitiv getestet zu markieren. Nach dem Aufrufen dieser Methode sollen automatisch al-
le Kontakte von A benachrichtigt worden sein und die entsprechenden Warnstufe per
Person.getNotification() zurlickgeben.

49

Implementieren Sie zusitzlich die Klasse ContactTracer, welche die folgenden public Metho-

den besitzt:

® ContactTracer.registerEncounter (Person pl, Person p2). Mit dieser Methode wird
eine (beidseitige) Begegnung zwischen Person-Objekten p1 und p2 protokolliert, indem
die beiden Personen anonyme IDs austauschen. Die ausgetauschten IDs miissen dabei

A Uf a be 4 O unterschiedlich sein. Eine Begegnung zwischen p1 und p2 ist beidseitig und muss somit
- auch als Begegnung zwischen p2 und p1 gewertet werden.
‘ o nta ct * ContactTracer.createPerson(int age). Diese Methode gibt ein Person-Objekt zuriick.
Das Alter der Person ist durch den age Parameter bestimmt.
u
I raCI n g Alle Person-Objekte werden von der Methode ContactTracer.createPerson(int age) er-
stellt. Der ContactTracer wird tiber den parameterfreien Konstruktor ContactTracer () instanzi-

iert. Sie diirfen annehmen, dass nie mehr als 1024 Begegnungen zwischen Personen protokolliert

werden.

Implementieren Sie auf Basis dieser Vorlage eine Losung fiir das Contact-Tracing-Problem.
Tests finden Sie in der Datei “ContactTracerTest java”. Die Datei “ContactTracerGradingTest java”
enthdlt die Tests, welche wir bei der Priifung fiir die Korrektur verwendet haben. Wir empfehlen,
diese Tests erst zu verwenden, wenn Sie denken, dass Ihre Losung korrekt ist, damit Sie sehen
konnen, wie Sie bei einer Priifung abgeschnitten hitten.

50

Nachbesprechung

Aufgabe 1:

Database

In dieser Aufgabe implementieren Sie fiir eine Datenbank von Personengesundheitsdaten das De-
klassifizieren von Eintrdgen (Task a) und das Verlinken von Eintragen (Task b). Alle Unteraufgaben
kénnen separat gelost werden.

Die Datenbank selber ist bereits mit der Klasse Database implementiert. Die Datenbank hilt
eine Liste von Eintrdgen, welche durch die Klasse Iten reprasentiert werden. Die folgenden 4
Paragraphen erkldren alle in der Vorlage gegebenen Klassen im Detail.

Item Die Klasse Item reprisentiert einen Datenbankeintrag mit 4 Attributen: eine ID (int), ein
Alter (int), einen Gesundheitswert (int), und ein Sicherheitslevel, welches durch die Klasse Level
reprasentiert wird. Alter und Gesundheitswert sind immer > (. Die Methoden Item.getID(),
Item.getAge(), Item.getHealth(), Ttem.getLevel() geben jeweils die ID, das Alter, den Ge-
sundheitswert, und das Sicherheitslevel eines Eintrags zurtick. Die Methode Item.setHealth(int
newHealth) setzt den Gesundheitswert auf newHealth. Die anderen Attribute kénnen nicht gedn-
dert werden.

Level Die Klasse Level reprasentiert ein Sicherheitslevel. Ein Sicherheitslevel wird iiber eine
Liste von Integern definiert, welches in einem Attribut der Klasse Level gespeichert wird und von
der Methode Level.getPoints () zurfickgegeben wird. Ein Level A ist verwandt mit einem Level
B, falls die Summe der Werte in A.getPoints() gleich der Summe der Werte in B. getPoints ()
ist. Zum Beispiel ist das Level [1,2,3,4] verwandt mit den Levels [10] und [4, 6] (die Summe ist
iiberall 10), aber nicht mit dem Level [4,5].

52

Aufgabe 2:

Loop-
Invarianten

1. Um die Loop-Invariante einfacher schreiben zu kénnen, diirfen Sie min(arr, i) benutzen.
Hier steht min(arr, i) fiir das minimale Element im Array arr von Index 0 bis Index
i (exklusiv). Alternativ kdonnte man auch formale Notation benutzen, in dem man mit
Quantoren arbeitet. Zum Beispiel, falls m == min(arr, i), dann kénnten Sie dquivalent
Folgendes schreiben

V0o <j<i(arr[j]l <m)

int min(int[] arr) {
// Precondition: arr != null && O < arr.length
int m = arr[0];
int i = 1;

// Loop-Invariante:
while (i < arr.length) {
if (arr[i] < m) {
m = arr[i];

¥

i++

}

// Postcondition: m = min(arr, arr.length)
return m;

53

2. String append(String strl, String str2) {
// Precondition: strl != null && str2 != null
String sl = stri;
String s2 = str2;

// Loop-Invariante:
while (!s2.equals("")) {

Loop- T2 - 2 merringD;
Invarianten '

Aufgabe 2:

// Postcondition: s.equals(strl + str2)
return s1;

b

Achtung: Die Bedingung strl !'= null &% str2 !'= null ist wichtig, damit Aufrufe wie
s2.equals(), s2.charAt(0) und s2.substring(1) tiberhaupt moglich sind. Der Aufruf
s2.substring(1) produziert das gleiche Resultat wie s2.substring(1, s2.length()).

54

Aufgabe 3:

Pyramide

Die Klasse Node représentiert einen Knoten in einem gerichteten Graphen, wobei es fiir jeden
Knoten 11 hochstens zwei gerichtete Kanten von 117 zu anderen Knoten 1>, 113 geben kann (11 und
n3 kénnen gleich sein). Wir unterscheiden dabei zwischen dem linken und dem rechten Knoten.
Die Methode Node .getLeft () gibt den linken Knoten und Node.getRight () den rechten Knoten
zuriick (als Nede-Objekt). Wenn der linke Knoten von 11 nicht existiert, dann gibt Node . getLeft ()
null zuriick (analog fiir den rechten Knoten).

Das Ziel dieser Aufgabe ist, fiir ein Node-Objekt zu entscheiden, ob der durch das Node-Objekt
definierte Graph einer Pyramide entspricht. Zum Beispiel entspricht der folgende Graph einer
Pyramide.

null null null null null null

55

Aufgabe 4:

Rechnungen
(erweitert)

In dieser Aufgabe erweitern Sie eine vorherige Aufgabe, in welcher ein System fiir Stromverbrau-
che Rechnungen erstellt. Konkret gibt es drei Erweiterungen: (1) Es sollen auch nicht korrekt
formatierte Eingabedateien gehandhabt werden. (2) Ein Kunde kann eine beliebige Anzahl von
Verbrauchswerten haben. (3) Es gibt eine neue Unteraufgabe b. In der folgenden Aufgabenbe-
schreibung fiir Unteraufgabe a sind die Anderung in bold markiert.

a) Vervollstindigen Sie die process-Methode in der Klasse Bills. Die Methode hat zwei Ar-
gumente: einen Scanner, von dem Sie den Inhalt der Eingabedatei lesen sollen, und einen
PrintStream, in welchen Sie die unten beschriebenen Informationen schreiben.

Thr Programm muss auch mit manchen nicht korrekt formatierten Eingabedatein umgehen.
Die Aufgabestellung gibt an, wie mit nicht korrekt formatierten Eingaben umzugehen ist.
Ein Beispiel einer korrekt formatierten Datei finden Sie im Projekt unter dem Namen “Data.txt”.
Exceptions im Zusammenhang mit Ein- und Ausgabe kénnen Sie ignorieren.

Eine valide Eingabedatei enthilt Zeilen, die entweder den Tarif, der angewendet werden
soll, oder die Daten fiir den Stromverbrauch eines Kunden beschreiben. Der Verbrauch eines
Kunden ist niemals grosser als 100000 Kilowattstunden.

Eine Tarifbeschreibung hat folgendes Format:

Tarif_n b pi .. upn

56

	Slide 1
	Slide 2: Organisatorisches
	Slide 3: Gameplan für die schriftliche Prüfung
	Slide 4: Interfaces
	Slide 5: Klassen: Neural Network
	Slide 6: Interfaces: Neural Network
	Slide 7: Interfaces: Neural Network
	Slide 8: Interfaces: Neural Network
	Slide 9: Interfaces: Neural Network
	Slide 10: Interfaces: Neural Network
	Slide 11: Interfaces: Neural Network
	Slide 12: Interfaces: Neural Network
	Slide 13: Interfaces: ArrayList
	Slide 14: Compiler-Fehler vs Exceptions
	Slide 15: Zuerst Compile-Fehler,…
	Slide 16: … dann Exceptions
	Slide 17: Exceptions können sehr spezifisch sein...
	Slide 18
	Slide 19: Beispiel 1
	Slide 20: Beispiel 1 – Das sieht der Compiler
	Slide 21: Beispiel 1
	Slide 22: Beispiel 1 – Ohne Short-Circuiting
	Slide 23: Aufgabe 1
	Slide 24: Aufgabe 2
	Slide 25: Aufgabe 3
	Slide 26: Aufgabe 4
	Slide 27: Aufgabe 5
	Slide 28: Aufgabe 6
	Slide 29: Aufgabe 7
	Slide 30: Aufgabe 8
	Slide 31: instanceof
	Slide 32
	Slide 33
	Slide 34
	Slide 35: Rename-Funktion in IntelliJ
	Slide 36: Was kann Rename?
	Slide 37: Wie nutze ich «Rename»?
	Slide 38: Vorbesprechung
	Slide 39: Aufgabe 1: Cyclic List
	Slide 40: Aufgabe 1: Cyclic List
	Slide 41: Aufgabe 2: Loop-Invariante
	Slide 42: Aufgabe 2: Loop-Invariante
	Slide 43: Aufgabe 3: Expression Evaluator
	Slide 44: Aufgabe 3: Expression Evaluator
	Slide 45: Aufgabe 3: Expression Evaluator
	Slide 46: Aufgabe 3: Expression Evaluator
	Slide 47: Aufgabe 4: Contact Tracing
	Slide 48: Aufgabe 4: Contact Tracing
	Slide 49: Aufgabe 4: Contact Tracing
	Slide 50: Aufgabe 4: Contact Tracing
	Slide 51: Nachbesprechung
	Slide 52: Aufgabe 1: Database
	Slide 53: Aufgabe 2: Loop-Invarianten
	Slide 54: Aufgabe 2: Loop-Invarianten
	Slide 55: Aufgabe 3: Pyramide
	Slide 56: Aufgabe 4: Rechnungen (erweitert)

