252-0027

Einflihrung in die Programmierung
Ubungen

Woche 13: Inheritance, Collections

Timo Stucki
Departement Informatik
ETH Ziirich

Organisatorisches

= Mein Name: Timo Stucki
= Bei Fragen: tistucki@student.ethz.ch
Mails bitte mit «[EProg25]» im Betreff
= Neue Aufgaben: Dienstag Abend (im Normalfall)
= Abgabe der Ubungen bis Dienstag Abend (23:59) Folgewoche

= Abgabe immer via Git

Losungen in separatem Projekt auf Git

Konstruktoren
Die Pfeile sind eine “erbt
e Ein Hund ist ein Tier.

Nicht alle Tiere sind ein Hund.

Ein Husky ist ein Tier und ein
Hund.

Wir wollen sichergehen, dass
Attribute richtig vererbt
werden

Konstruktoren - Beispiel

Hund

@ @ -

Konstruktoren - Beispiel

Tier(){

Tier t = new @)

Y =25

println(t.y) 2

Hund h = new () Hund () {
-y = 13

println(h.y) || 1

Husky () {

Husky h2 = new ()

println(h2.y) || 1

Konstruktoren - Beispiel

Die Pfeile sind eine “erbt
von” - Beziehung

* Wir wollen auf die Variable
des statischen Typen
zugreifen

 Diese ist hier aber nicht
explizit deklariert worden.

Husky () {

Husky h2 = new ()

println(h2.y)

Konstruktoren - Beispiel

Die Pfeile sind eine “erbt
von” - Beziehung

* Wir wollen auf die Variable
des statischen Typen
zugreifen

 Diese ist hier aber nicht
explizit deklariert worden.

» Konstruktoren setzen
Variablen auf spezifische,
oder im Notfall, Standard
werte. (null oder typ-spez.)

Husky h2 = new ()

println(h2.y)

Konstruktoren - Beispiel

Die Pfeile sind eine “erbt
von” - Beziehung

* Wir wollen auf die Variable
des statischen Typen
zugreifen

 Diese ist hier aber nicht
explizit deklariert worden.

Wie kdnnen wir etwas
vererben, was nicht
gesetzt wurde?

Husky h2 = new ()

println(h2.y)

Konstruktoren

* Instanziierung von Subklassen:

* Erfordert das vorherige Ausfihren des Superklassen-Konstruktors.
* Default-Konstruktor:

* Ruft automatisch den Konstruktor der Superklasse auf.

 Zweck:

* Aufrufen der Superklassen-Konstruktoren stellen sicher, dass alle
Attribute korrekt initialisiert werden.

* Sie bereiten das Objekt so vor, dass es direkt genutzt werden kann.

Konstruktoren - Beispiel

super()

super()

Husky h2 = new

println(h2.y)

Tier(){
Y = 25

Hund(){
Ly =1

Husky () {

X = 1;

Konstruktoren - Beispiel

super()

super()

Husky h2 = new

println(h2.y)

Tier(){
Y = 25

Hund(){
Ly =1

Husky () {

X = 1;

Konstruktoren - Beispiel

super()

super()

Husky h2 = new

println(h2.y)

Tier(){
Y = 25

Hund(){
Ly =1

Husky () {

X = 1;

Konstruktoren - Beispiel

Husky h2 = new

println(h2.y)

Tier(){
Y = 25

Hund(){
Ly =1

Husky () {

X = 1;

Konstruktoren - Beispiel

super()

super()

Husky h2 = new

println(h2.y)

Tier(){
Y = 25

Hund(){
Ly =1

Husky () {

X = 1;

Konstruktoren - Beispiel

super()

super()

Husky h2 = new

println(h2.y)

Tier(){
Y = 25

Hund(){
Ly =1

Husky () {

X = 1;

Konstruktoren

* Subklasse instanziieren:

* Erfordert die Instanziierung der Superklasse.

* Default-Konstruktor:

* Ruft automatisch den Konstruktor der Superklasse auf.

* Konstruktoren und Vererbung:

* Konstruktoren werden nicht vererbt.

* Sinn von Konstruktoren:

* Initialisierung von Attributen bei der Objekterstellung.

Im Hinterkopf behalten:

= Das bedeutet, dass alle Konstruktoren einer Subklasse,
implizit “super()” (also den Default-Konstruktor der
Superklasse) aufrufen, wenn ansonsten im Subklassen-
Konstruktor kein expliziter super(...) (mit oder ohne
Argumente) Aufruf stattfindet.

= Grund: Instanziierung einer Subklasse erfordert immer auch
die Instanziierung der Superklasse.

Parametrisierte Konstruktoren

Default-Konstruktor tUberschrieben:

* Wenn der Default-Konstruktor der Superklasse durch einen parametrisierten
Konstruktor ersetzt wird.

super(...) erforderlich:

e super(...) muss explizit aufgerufen werden, um den Konstruktor der Superklasse zu
nutzen.

Parameterreihenfolge beachten:

* Die Reihenfolge und Anzahl der Parameter in super(...) muss identisch mit der des
Superklassenkonstruktors sein.

Fehler vermeiden:

* Kein Aufruf von super(...) fihrt zu einem Kompilierungsfehler.

Beispiel

Wir sind
gezwungen explizit
super() aufzurufen
- auch wenn es
keinen Unterschied
macht.

19

vi vi
‘ Super() { Super() {

y = 2; Wy = 2;
o ¥ = £y

X3
Sub() {
(3);

Interfaces

Interfaces

Definition:

* Legen das Verhalten fest, das eine Klasse haben muss, um das Interface zu
implementieren.

Implementierung der Methoden:

* Das Interface gibt nur die Methodensignaturen vor — die Implementierung
erfolgt in der Klasse.

Keine Attribute:
* Interfaces enthalten keine Attribute, nur Konstanten.
Eigenschaften von Attributen:

* Alle Konstanten in einem Interface sind public, static und final.
* Konstanten gehoren zum Interface und sind unveranderlich.

EEhrzetont Verbrenner {

aktuellerGang();
start();

wechsleGang(gang);
stop();
checkSystem();
fahrmodusWechsel();

Fahrmodus aktuellerFahrmodus();

Schluessel {
neuerSchluessel(String id);

P,D,R,N; verriegeln();

Fahrmodus{

. entriegeln();
¥;

fenster (

public class Auto {
}

public Auto implements Fahrzeug {
[/ Vorgeschrieben durch Fahrzeug Implementierung
public void start() {}
public void stop() {}
public void checkSystem() {}
public void fahrmodusWechsel() {}
public FahrModus aktuellerFahrmodus() {}

Wir kdnnen auch mehrere Interfaces implementieren

public Auto implements Fahrzeug, Schluessel {
[/ Vorgeschrieben durch Fahrzeug Implementierung
public void start() {}
public void stop() {}
public void checkSystem() {}
public void fahrmodusWechsel() {}
public FahrModus aktuellerFahrmodus() {}

|/ Vorgeschrieben durch Schluessel Implementierung
public void neuerSchlissel(String id) {}

public void verriegeln() {}

public void entriegeln() {}

public void fenster(hoch) {}

Wir konnen auch mehrere Interfaces implementieren

Interfaces: Intuition

* Definition:
* Ein Interface definiert einheitliche Regeln fur Klassen.
* Grundidee:

* Klassen mussen eine vorgegebene Grundstruktur erfillen.

* Die Implementierung der Details bleibt der Klasse tUberlassen.

Interfaces: Aus Sicht des Compilers

Pflicht zur Implementierung:

* Alle Methoden des Interfaces mussen in der implementierenden Klasse definiert
werden.

"Vererbung" der Methodennamen:

* Nur die Signaturen der Methoden werden tibernommen — die Implementierung erfolgt
durch die Klasse.

Klare Regeln:

* Stellt sicher, dass alle Klassen mit dem Interface einheitliche Methoden bereitstellen.
Wichtig:

* Interfaces sind keine Klassen, sondern reine "Vertrage".

* Eine Klasse kann mehrere Interfaces gleichzeitig implementieren.

Vollstindig definiert: interface I1 {

' void a();
void a(){..} : .
void b(){..} void b(); }
void c(){..} :
void d(){..} interface I2 {

void c();
void d(); }

I2 h = new B() I1 hl = new C()

println(h.a())

println(hl.a())

F h2 = new F()

println(h2.a())

Dynamic Binding musste
eigentlich funktionieren,
oder?

Der Compiler Uberpruft, ob
die Methode im statischen
Typ abrufbar ist:

a ist auf 12 nicht definiert.

Dies fuhrt zu einem
Compiler-Fehler!

X

Vollstandig definiert:

void a(){..}
void b(){..}
void c(){..}
void d(){..}

I2 h = new B()

println(h.a())

interface I1 {
void a();
void b(); }

interface I2 {
void c();
void d(); }

interface I1 {
public void method1();

public class Base {
int x = 100;

public void method1() {
System.out.println("B m1 x=" + x);

public class T extends Base implements I1
int x = 200;

public void method@() {
System.out.println("T m@ x=" + x);

public class Q implements I1 {
int x = 300;
void methodl1() {
System.out.println("Q ml x=" + x);

public class R implements I1 {
int x = 400;

public void methodl1() {
System.out.println(”R m1 x=" + x);

}
public void methodl(int i) {

System.out.println(”R m1 i=" + 1i);

public class S extends T {

public void method1() {
System.out.println(”S m1 x=" + x);

public void methodl(int i) {
System.out.println(”S m1 i=" + i);

public class X extends Base {
int x = 600;

public void method1() {
System.out.println("X m1 x=" + x);

Base b = new Base();

b.method1();

Base b = new T();
b.method1();

I1T g = new Q();
g.method1();

IT t = new TQ;
t.method1(1);

B m1 x=100

B m1 x=100

Compile-Fehler

Compile-Fehler

R r = new R();
r.method1(2);

Rmli=2
R r = new R();

r.method1(); R m1 x=400

S's = new SQ);

s.method1(3); S m1i=3

IT s = new SO);

s.method1();

S m1 x=200

IT x = new X();
x.method1(); Compile-Fehler

Loop Detection with Sets

Zyklen finden

* Oft: Annahme, dass keine
Zyklen vorkommen.

* Problem: Was wenn doch
Zyklen vorkommen dirfen?

35

Zyklen finden

* Option 1: Modifizieren der
Datenstruktur mit einen

visited Attribut. (u09</

* Option 2: Nutzen von Sets
um besuchte Nodes zu
speichern.

36

Zyklen finden

* Wie unterscheiden wir zwei Objekte?

. . . . ublic boolean equals(Object o
 equals kdnnen wir nicht immer nutzen! |° o e ey
o = (Room)o;
if(this.age == o.age) {
return true;
}
}

return false;

age = 2 age = 2

Room@29ca901le Room@5025a98f

true x

37

Zyklen finden

* Wie unterscheiden wir zwei Objekte?

: .. . blic bool 15 (0bj
* Hier kdnnen wir Referenzen P B e e et)
vergleichen! 1f(this :Zt(ljr)‘n{tr-ue;
}
}
return false;
) }
age = 2 age = 2

Room@29ca901le Room@5025a98f

false

38

Zyklen finden

* Mit Sets: Nutzen von
Set<Room> um alle
besuchten Nodes zu
speichern.

* Option 1: HashSet<Room>

* Option 2: TreeSet<Room>

39

Zyklen finden

* Option 1: HashSet<Room>

* Die Methoden equals und hashcode der Objekt-Klasse
uberschreiben.

* Option 2: TreeSet<Room>

* Comparable-Interface implementieren und compareTo-Methode
uberschreiben.

Zyklen finden: HashSet

* Option 1: HashSet<Room>

° In IntelliJ: Rechtsclick ->
Generate... -> Generate
hashcode() und equals()

Generate

Constructor

Getter

Setter

Getter and Setter
equals() and hashCode()
toString()

Override Methods...
Test...

Copyright

41

Zyklen finden: HashSet

(] Generate equals() and hashCode()

* Option 1: HashSet<Room>

Template: java.util.Objects.eq... (Java 7 and higher)

* In IntelliJ: Rechtsclick ->
Generate"' -> Generate ® instanceof expression
h aShCOd E() U N d eq Ua IS() getClass() comparison expression

For class type comparison in equals() method generate:

Use getters when available

? Cancel

42

Zyklen finden: HashSet

e Option 1: HashSet<Room>

° In IntelliJ: Rechtsclick ->
Generate... -> Generate
hashcode() und equals()

o Generate equals() and hashCode()

Choose fields to be included in equals()

o Generate equals() and hashCode()

Choose fields to be included in hashCode()

43

Zyklen finden: HashSet

* Option 1: HashSet<Room>

. Wir benutzen Operationen und
@Override Methoden von Superklassen um
public int hashCode() { hashCode zu implementieren.

return Objects.hashCode(age);

@0verride

public boolean equals(Object o) {

if (!(o instanceof Room room)) return false;

return age == room.age;

44

Zyklen finden: HashSet

* Option 1: HashSet<Room>

@0verride
public int hashCode() {

return Objects.hashCode(age);
Objekte von
unterschiedlichem

Typ sind nie equals.
yp q @0verride

public boolean equals(Object o) {

if (!(o instanceof Room room)) return false;

return age == room.age;

45

Zyklen finden: HashSet

* Option 1: HashSet<Room>

Attribute vergleichen.

@0verride
public int hashCode() {
return Objects.hashCode(age);

@0verride
public boolean equals(Object o) {

if (!(o instanceof Room room)) return false;

return age == room.age;

46

Zyklen finden: TreeSet

° Option 2: Tr\eeset<Room> Damit TreeSet funktioniert muss Room das

Comparable-Interface implementieren.

public class implements Comparable<Room> {

int ;

@0verride
public int compareTo(Room o) {

return 0O;

47

Zyklen finden: TreeSet

* Option 2: TreeSet<Room>

public class implements Comparable<Room> {

int ;

@0verride
public int compareTo(Room o) {

return O;

Jetzt mussen wir nur noch die compareTo-Methode
sinnvoll implementieren.

48

Zyklen finden: TreeSet

* Option 2: TreeSet<Room>

* compareTo gibt 0 zurtick, falls die Objekte equals sind.

* compareTo gibt 1 zurlick, falls this-Objekt ,grosser” als das
Parameter-Objekt ist.

* compareTo gibt -1 zurlick, falls this-Objekt , kleiner” als das
Parameter-Objekt ist.

Zyklen finden: TreeSet

* Option 2: TreeSet<Room>

@0verride
public int compareTo(Room o) {
if(this.equals(o)) {

return 0;

} else if(this.age > o.age) {

return 1;
} else {

return -1;

50

Zyklen finden: TreeSet

* Option 2: TreeSet<Room>

* Wenn Comparable implementiert ist, dann kbnnen wir mit
Collections.sort sortieren.

* Wenn Comparable implementiert ist, dann kdnnen wir mittels
PriorityQueue<Room> einen Heap erstellen.

* MitCollections.reverseOrder() kdonnen wir von aufsteigender
Ordnung zu absteigender Ordnung wechseln.

Zyklen finden: TreeSet

* Option 2: TreeSet<Room>

* Wenn Comparable implementiert ist, dann kénnen wir mit
Collections.sort sortieren.

public void (List<Room> rooms) A{

Collections.sort(rooms);

52

Zyklen finden: TreeSet

* Option 2: TreeSet<Room>

* Wenn Comparable implementiert ist, dann konnen wir mittels
PriorityQueue<Room> einen Heap erstellen.

public PriorityQueue<Room> (List<Room>) {

= new PriorityQueue<>();
return priorityQueue;

53

Zyklen finden: TreeSet

* Option 2: TreeSet<Room>

* MitCollections.reverseOrder() kdnnen wir von aufsteigender
Ordnung zu absteigender Ordnung wechseln.

public void (List<Room> rooms) {

54

Maps

Maps

* Option 1: HashMap

* Die Methoden equals und hashcode der Objekt-Klasse
uberschreiben.

* Option 2: TreeMap

* Comparable-Interface implementieren und compareTo-Methode
uberschreiben.

Vorgehen bei der Programmierpriufung

= Alle Aufgaben liberfliegen.
= Mit der einfachsten Aufgabe beginnen:
= Aufgabenstellung gut durchlesen

" Programmieren

= Uberblick tiber Klassen verschaffen und nitzliche Attribute zu
Helferklassen hinzufligen / Methoden fiir Interfaces implementieren

= Falls noch Zeit bleibt: Fehlende Testcases selbst schreiben

= Falls nach ca. 30 min (je nach Umfang der Aufgabe) noch nicht
fertig: Zur nachsten Aufgabe weitergehen

Vorbesprechung

Gegeben ist die Methode findLargestSmaller(int[] al, int value), die in einem sortierten
nicht-leeren Array von int-Werten den grossten Wert findet, der strikt kleiner als value ist. value
muss strikt grosser als al[0] sein.

Was ist die Invariante fiir den Loop in der Methode findLargestSmaller? Wenn die Elemente
a[0] ... a[K] des Arrays a sortiert sind, dann kinnen Sie das mit Sorted(a, 0, K) abkiirzen.

static int findLargestSmaller(int[] al, int value) {
// Precondition: Sorted(al, 0, al.length-1) &k al.length >= 1 && value > all[0]
int candidate = all0];
int next = 1;

Aufgabe 1:

Loop- |
// Loop Invariante:
= -
Invariante e e)

next++;

// Postcondition: Sorted(al, 0, al.length-1) && al.length >= 1 &&
((next < al.length &k value <= al[next] && candidate == al[next-1]) ||
(next == al.length && candidate == al[al.length-1] &% value > candidate))

return candidate;

59

Aufgabe 2:

Maps

1. Implementieren Sie eine Methode UL1Map.arrayToMap (String[] A), die einen Array A von
Strings als Parameter akzeptiert und eine Map M von String zu Integer zuriickgibt. Jeder
String, der in A auftritt, soll in M auf die Zahl 0 abgebildet werden. Sie konnen davon
ausgehen, dass A nicht null ist und dass kein String der empty (leere) String ist.

Zum Beispiel gibt arrayToMap fiir den Array [one, two, three, one] die Map {one=0,
two=0, three=0} zuriick.

2. Implementieren Sie eine Methode U11Map.arrayToMapOne (String[] A), die einen Array

A von Strings als Parameter akzeptiert und eine Map M von String zu Integer zuriickgibt.
Jeder String, der in A auftritt, soll in ¥, falls der String nur einmal vorkommt, auf die Zahl
0 abgebildet werden und, falls der String mehrfach vorkommt, auf die Zahl 1 abgebildet
werden. Sie konnen davon ausgehen, dass A nicht null ist und dass kein String der empty
(leere) String ist.

Zum Beispiel gibt arrayToMapOne fiir [one, two, three, one] die Map {one=1, two=0,
three=0} zurtick und fiir [one, two, three, one, one, four, two] die Map {four=0,
one=1, two=1, three=0}.

60

Aufgabe 3:

Generische
Listen

In dieser Aufgabe implementieren Sie eine generische verkettete Liste. Anhang A zeigt eine
generische Version eines Interfaces fiir Listen. Vervollstindigen Sie die Klasse MyListImpl, sodass
die Klasse das MyList Interface implementiert. Dem Interface wurden zwei neue Methoden
hinzugefiigt. Diec Methode MyListNode getNode(int index) gibt den Knoten zuriick, welcher
den Wert der Liste an Position index speichert. MyListeNode ist selber ein Interface (siche An-
hang B) mit Methoden, welche jeweils den gespeicherten Wert des Knoten, den nichsten Knoten,
und ob es einen ndchsten Knoten gibt zurtickgeben. Damit tiberpriifen wir, dass MyListImpl
eine verkettete Liste implementiert. Die Methode Iterator<T> iterator() gibt einen Iterator
fiir die Datenstruktur zuriick. Implementieren Sie einen neuen Iterator, das heisst eine Klasse,
welche das Iterator Interface implementiert, und geben Sie nicht den Iterator einer anderen
Datenstruktur zuriick (zum Beispiel den Iterator einer ArrayList). Dies kénnen wir in den Tests
der Korrektur testen. Die void remove () Methode vom Iterator wird nicht benotigt. Die Methode
void addAll(MyList<T> other) sollte cine konstante Laufzeit haben. Ein paar Tests finden Sie
in MyListTest.

61

Aufgabe 4:

Notenauswertung

Die Klasse Service stellt verschiedene Analysen fiir Priifungsergebnisse von S Studierenden
zur Verfiigung. Die Liste von Ergebnissen besteht aus S Eintrégen, also jeweils ein Eintrag pro
Student/in. Jeder Eintrag bestcht aus ciner Zeile und enthilt (in dieser Reihenfolge):

1. die Immatrikulationsnummer des Studierenden (ein identifizierender positiver int-Wert)
2. drei Noten (drei reelle Zahlen im Bereich von 1.0 bis 6.0, getrennt durch Leerzeichen)

Die drei Noten gehoren zu den Fachern Fach 1, Fach 2 und Fach 3. Zusitzliche Leerzeilen und
-zeichen sollen ignoriert werden. Eine Beispiel fiir eine Liste fiir 3 Studierende ist:

111111004 5.0 5.0 6.0

111111005 3.75 3.0 4.0

111111006 4.5 2.25 4.0

Ihre Aufgabe ist es nun, die Service-Klasse und ihre Analysen zu implementieren. Die

Service-Klasse hat einen Konstruktor, welcher alle Priifungsergebnisse aus einem Scanner ausle-
sen und damit das Service-Objekt initialisieren soll. Das Objekt soll so initialisiert werden, dass
die vorgegebenen Methoden ihre Analysen durchfiihren konnen. Sie diirfen dabei Attribute und
zusitzliche Methoden frei bestimmen.

62

Aufgabe 4:

Notenauswertung

a)

b)

Implementieren Sie nun die Methode critical (), welche die zwei Argumente bound1 und
bound2 erwartet. Die Methode sucht alle “kritischen” Félle und gibt eine Liste dieser Studieren-
den zuriick. Ein Student darf maximal einmal in der Liste vorkommen. Die zuriickgegebene
Liste besteht aus den Immatrikulationsnummern dieser Studierenden (in beliebiger Reihenfol-
ge).

Ein/e Student/in gilt als kritisch, wenn die Note in Fach 1 < boundl und diec Summe der
Noten fiir Fach 2 und Fach 3 kleiner als bound2 ist.

Fiir das obige Beispiel gdbe critical(4, 8) eine Liste mit dem Element 111111005 zurtick.

Implementieren Sie nun die Methode top (), welche die Studierenden mit den besten Ergeb-
nissen zurtickgeben soll. Der Parameter 1limit bestimmt die maximale Anzahl der zuriick-
zugebenden Studierenden. Falls weniger Ergebnisse als 1imit existieren, sollen einfach alle
gefundenen zuriickgegeben werden.

Der Riickgabewert der Methode ist wieder eine Liste der Immatrikulationsnummern. Ein
Student darf maximal cinmal in der Liste vorkommen. Diese Liste soll absteigend nach der
Leistung sortiert sein (der/die Student/in mit dem besten Ergebnis zuerst). Dabei gilt, dass
ein Ergebnis A besser ist als ein Ergebnis B, wenn die Summe aller Noten von A grisser ist als
die Summe der Noten von B. Sind die Summen gleich, sind die Ergebnisse gleich gut (und die
Reihenfolge in der Liste somit egal).

Fiir das obige Beispiel gibe top(2) entweder die Liste [111111004, 111111006] oder die
Liste [111111004, 111111005] zuriick (beide wiren richtig).

63

Aufgabe 5:

Interpreter

In der letzten Ubung implementierten Sie einen Evaluator fiir mathematische Ausdriicke. In
dieser Aufgabe erweitern Sie ihn so, dass er statt einzelnen Ausdriicken einfache Programme mit
mehreren Anweisungen auswertet. Das nennt man auch interpretierern und ein solches Programm
entsprechend Interpreter.

digit
char
num
var
func
op
atom
term
expr
stmt
prog

rTTTTTTTTTT

o1 ...]9
A|B|...|Z|alb]| ... |2
digit { digit } | . digit { digit } |
char { char }

char { char } (

=] /]"

num | var

Cexpr) | func expr) | atom
term [op term |

var = expr ;

{ stmt }

Abbildung 1: EBNF-Beschreibung von prog

alpha = i * ((2#PI) * (1 / 6.05));
size = (0.25 * cos(t/2)) + 0.75;

x = cos(alpha + (0.3 * t)) * size;
v sin((1.5 * alpha) + t) * size;

r = (cos(alpha + (2 * t)) + 1) / 2
g = (sin(alpha + (2 * t)) + 1) / 2
b = (cos(alpha + (PI/2)) + 1) / 2

Abbildung 2: Beispiel-Programm

3

]

3

64

Das Interpretieren von Quellcode ist ineffizient und lang-

sam. Deshalb werden Java-Programme auch zuerst kom- E_B'E #1 IP-‘!?OG_ISEF}_I;F%ER %\J}{‘;ﬁég}?
piliert, bevor sie ausgefithrt werden. Kompilieren heisst, . LEGIT l"lF‘\ ALK o
den Quellcode in eine Form zu iibersetzen, die vom MY CODE'S COMPILING.

Computer direkt(er) ausgefiihrt werden kann. In dieser
Ubung schreiben Sie einen einfachen Compiler, der den

A u fg a be 6 : Quellcode von Programmen von Aufgabe 5 in eine Se-

rie von Instruktionen iibersetzt, die effizient ausgefiihrt

C = I werden kénnen.
O m pl e r Die Programmiersprache in Aufgabe 5 hat eine re-

kursive Struktur: Ausdriicke konnen mehrere Ausdriicke
enthalten, welche wiederum mehrere Ausdriicke enthal-
ten konnen, usw. Um eine solche Struktur in eine lineare
Folge von Instruktionen umzuwandeln, verwenden wir
einen Operanden-Stack. Dies ist ein Stack (wie Sie Ihn in der Vorlesung gesehen haben), der Zwi-
schenresultate von Berechnungen speichert. Instruktionen kénnen Werte auf den Stack “pushen”
oder Werte ab dem Stack “poppen” und verwenden. Es gibt folgende Arten von Instruktionen:

HEY! GETBACK

xked: Compiling by Randall Munroe (CC BY-NC 2.5)

65

Aufgabe 6:

Compiler

Programmteil Instruktionen

b LOAD b
1 CONST 1
b+ 1 LOAD b CONST 1 OP +
(b + 1) LOAD b CONST 1 0P +
2 CONST 2
c LOAD c
2*c CONST 2 LOAD c¢ OP =
sin(2 * c) CONST 2 LOAD c¢ OP =
(b + 1) / sin(2 * c) LOAD b CONST 1 OP + CONST 2 LOAD c OP =*
a=(b+ 1) / sin(2 * c); LOAD b CONST 1 OP + CONST 2 LOAD c OP =*

Tabelle 1: Kompilieren der Anweisung a = (b + 1) /

CONST ¢ Pusht den konstanten Wert ¢ auf den Stack

FUNC sin
FUNC sin OP /
FUNC sin OP / STORE a

sin(2 * c);

LOAD v Ladt den Wert der Variable v und pusht ihn auf den Stack

STORE v Poppt einen Wert vom Stack und speichert ihn in der Variable v

0P @ Poppt zwei Werte r und I vom Stack (zuerst r, dann I) berechnet
I @ r und pusht das Resultat zuriick auf den Stack

FUNC f Poppt einen Wert x vom Stack, berechnet f(x) und pusht das

Resultat zurtick auf den Stack

Unten sehen Sie ein kleines Programm, das aus solchen Instruktionen besteht. Es ladt zuerst den
Wert der Variable x und dann einen konstanten Wert 2 auf den Stack. Die nédchste Instruktion
holt sich die beiden Werte vom Stack, multipliziert sie und pusht das Resultat zurtick. Die letzte
Instruktion schliesslich holt diesen Wert vom Stack und speichert ihn zuriick in die Variable x:

LOAD x
CONST 2
0P *

STORE x

66

Aufgabe 7:
EBNF-

Baum

Achtung: Diese Aufgabe gibt Bonuspunkte (siehe “Leistungskontrolle” im www.vvz.ethz. ch). Die
Aufgabe muss eigenhdndig und alleine gelost werden. Die Abgabe erfolgt wie gewohnt per Push
in lhr Git-Repository auf dem ETH-Server. Verbindlich ist der letzte Push vor dem Abgabetermin.
Auch wenn Sie vor der Deadline committen, aber nach der Deadline pushen, gilt dies als eine zu
spdte Abgabe. Bitte lesen Sie zusitzlich die allgemeinen Regeln.

67

Nachbesprechung

Aufgabe 1:

Cyclic List

CircularLinkedIntlList
last :
size : 4

IntNode IntNode IntNode IntNode
value: i/’ value: i/—.value: i/—- value: 7
next : next : next : neff_i-::::>

Abbildung 1: Zyklische Liste mit Werten 1, 3, 3, 7.

69

Aufgabe 2:

Loop-
Invariante

Gegeben den Pre- und Postcondition formulieren Sie eine Loop-Invariante in der Datei “Loopln-
variante.txt” fiir die folgenden Programme.

1. Um die Loop-Invariante einfacher schreiben zu kénnen, diirfen Sie contains(arr, c)
benutzen. Hier sagt uns contains(arr, c), ob der Char ¢ im Array arr enhalten ist.
Ebenfalls kénnen Sie subarray(arr, i) benutzen, welches eine Kopie vom Array arr von
Index 0 bis und mit i darstellt. Alternativ konnte man auch formale Notation benutzen, in
dem man mit Quantoren arbeitet.

void erase(char[] arr, char c) {
// Precondition: arr != null && c != ’x’
int i = 0;
// Loop-Invariante:
while (i != arr.length) {
if (arr[i] == ¢) {
arr([i] = ’x’;

+

i+

// Postcondition: !contains(arr, c)

70

Aufgabe 2:

Loop-
Invariante

2. public int compute(String s, char c¢) {
int x;
int 1i;

x = 0;
_1;

// Loop-Invariante:
while (x < s.length() && i < 0) {
if (s.charAt(x) == c¢) {
i=x;
}
x

=x + 1;

// Postcondition:
/7 (0 <=1 & i < s.length() &% s.charAt(i) == c) || count(s, c) ==
return i;

}

Die Methode count (String s, char c¢) gibt zuriick wie oft der Character ¢ im String s vor-
kommt. Schreiben Sie die Loop Invariante in die Datei “Looplnvariante.txt”. Achtung: Die Aufgabe
ist schwerer als es zuerst scheint. Uberpriifen Sie Ihre Losung sorgfaltig.

7

In dieser und in folgenden Ubungen werden Sie eine Reihe von Programmen schreiben, wel-
che andere Programme interpretieren, kompilieren oder (in kompilierter Form) ausfithren. Die
Programmiersprachen definieren wir selber.

Als Einstieg schreiben Sie ein Programm, welches mathematische Ausdriicke (expressions)
auswertet. Die Ausdriicke bestehen aus Zahlen, Variablen, Operatoren wie + oder — und einfachen
Funktionen wie sin() oder cos(). Die genaue Syntax fiir diese Ausdriicke finden Sie als EBNF-
Beschreibung in Abbildung 2.

digit

Aufgabe 3:

of1]...1]9
A|lB|...|Z]a|b]|... |z
digit { digit } [. digit { digit }]

=
=
—_
E = var <= char { char }
xp ress I O n func <= char { char } (
—_
=
=

i

Evaluator .

close

H=x]/]"
(
)

atom < num | var
term < open expr close
expr <= term [op term |

atom

func expr close

Abbildung 2: EBNF-Beschreibung von expr
Ein Programm, das Ausdriicke auswertet, muss natiirlich entscheiden, ob eine gegebene Zei-

chenkette iiberhaupt ein giiltiger Ausdruck ist*. Das nennt man parsen und ein solches Programm
heisst Parser. Aus einer EBNF-Beschreibung wie dieser kann man einfach einen Parser erstellen®:

72

Aufgabe 4:

Contact
Tracing

In dieser Aufgabe implementieren Sie eine Contact-Tracing-Applikation, welche es ermoglichen
soll, Kontakte wahrend eines Virus-Ausbruches nachzuverfolgen. Thre Implementierung soll
zunichst Begegnungen zwischen verschiedenen Person-Instanzen anonym protokollieren, so dass
bei einem positivem Test die Benachrichtigung aller Personen moglich ist, die direkt oder indirekt
mit einer positiv getesteten Person in Kontakt standen.

Anonyme Begegnungen. Um Anonymitit zu gewéhrleisten, diirfen zwei Personen A und B bei
einer Begegnung lediglich anonyme Integer-IDs austauschen, ohne dabei die Identitat der jeweils
anderen Person aufzudecken. Beide Personen speichern hierbei sowohl die eigene ID als auch
die ID der anderen Person. Bei der positiven Testung von A kann dann mithilfe der anonymen
IDs, die A genutzt hat, festgestellt werden, ob B einer dieser IDs begegnet ist. Um zu vermeiden,
dass wiederkehrende IDs die Identifikation einer Person iiber mehrere Begegnungen hinweg
ermoglichen, benutzt jede Person fiir jede Begegnung frische IDs, welche iiber eine zentrale Klasse
ContactTracer vergeben werden. Frisch bedeutet hierbei, dass eine ID zuvor noch nie bei einer
Begegnung verwendet wurde.

Direkte und indirekte Kontakte. Nachdem eine Reihe an Begegnungen protokolliert wurden,
wird eine oder mehrere Personen positiv getestet. Mit dem erfassten Netzwerk aus Begegnungen
soll Thre Applikation dann zwei verschiedene Arten an Kontaktpersonen bestimmlten:
* Als direkfe Kontakte gelten alle Personen, die eine Begegnung mit einer positiv getesteten
Person hatten.

* Als indirekte Kontakte hingegen gelten alle Personen, die zwar selbst keine Begegnung
mit einer positiv getesteten Person hatten, jedoch Kontakt mit mindestens einer anderen
Person, welche als direkter Kontakt gilt, hatten. Indirekte Kontakte mit mehr als einer
Zwischenperson miissen Sie dabei nicht beriicksichtigen.

Sie diirfen dabei annehmen, dass zundchst alle Begegnungen erfasst werden und erst dann
Personen positiv getestet werden. Nach der ersten positiven Testung finden keine weiteren
Begegnungen mehr statt.

73

	Slide 1
	Slide 2: Organisatorisches
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Konstruktoren
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Konstruktoren
	Slide 17: Im Hinterkopf behalten:
	Slide 18: Parametrisierte Konstruktoren
	Slide 19
	Slide 20
	Slide 21: Interfaces
	Slide 22: Interfaces
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Interfaces: Intuition
	Slide 28: Interfaces: Aus Sicht des Compilers
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Loop Detection with Sets
	Slide 35: Zyklen finden
	Slide 36: Zyklen finden
	Slide 37: Zyklen finden
	Slide 38: Zyklen finden
	Slide 39: Zyklen finden
	Slide 40: Zyklen finden
	Slide 41: Zyklen finden: HashSet
	Slide 42: Zyklen finden: HashSet
	Slide 43: Zyklen finden: HashSet
	Slide 44: Zyklen finden: HashSet
	Slide 45: Zyklen finden: HashSet
	Slide 46: Zyklen finden: HashSet
	Slide 47: Zyklen finden: TreeSet
	Slide 48: Zyklen finden: TreeSet
	Slide 49: Zyklen finden: TreeSet
	Slide 50: Zyklen finden: TreeSet
	Slide 51: Zyklen finden: TreeSet
	Slide 52: Zyklen finden: TreeSet
	Slide 53: Zyklen finden: TreeSet
	Slide 54: Zyklen finden: TreeSet
	Slide 55: Maps
	Slide 56: Maps
	Slide 57: Vorgehen bei der Programmierprüfung
	Slide 58: Vorbesprechung
	Slide 59: Aufgabe 1: Loop-Invariante
	Slide 60: Aufgabe 2: Maps
	Slide 61: Aufgabe 3: Generische Listen
	Slide 62: Aufgabe 4: Notenauswertung
	Slide 63: Aufgabe 4: Notenauswertung
	Slide 64: Aufgabe 5: Interpreter
	Slide 65: Aufgabe 6: Compiler
	Slide 66: Aufgabe 6: Compiler
	Slide 67: Aufgabe 7: EBNF-Baum
	Slide 68: Nachbesprechung
	Slide 69: Aufgabe 1: Cyclic List
	Slide 70: Aufgabe 2: Loop-Invariante
	Slide 71: Aufgabe 2: Loop-Invariante
	Slide 72: Aufgabe 3: Expression Evaluator
	Slide 73: Aufgabe 4: Contact Tracing

