
252-0027

Einführung in die Programmierung
Übungen

Woche 13: Inheritance, Collections

Timo Stucki
Departement Informatik
ETH Zürich

Organisatorisches

▪ Mein Name: Timo Stucki

▪ Bei Fragen: tistucki@student.ethz.ch

▪ Mails bitte mit «[EProg25]» im Betreff

▪ Neue Aufgaben: Dienstag Abend (im Normalfall)

▪ Abgabe der Übungen bis Dienstag Abend (23:59) Folgewoche

▪ Abgabe immer via Git

▪ Lösungen in separatem Projekt auf Git

2

3

Tier

Hund

Husky

Konstruktoren

Die Pfeile sind eine “erbt

von” - Beziehung

• Ein Hund ist ein Tier.

• Nicht alle Tiere sind ein Hund.

• Ein Husky ist ein Tier und ein

Hund.

• Wir wollen sichergehen, dass

Attribute richtig vererbt

werden

4

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

int x =1

int y =1

int y = 2

Hund h = new Hund()

Tier t = new Hund()

println(h2.y)

println(h.y)

println(t.y) 2

1

1

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

int x =1

int y =1

int y = 2

println(h2.y)

Die Pfeile sind eine “erbt

von” - Beziehung

• Wir wollen auf die Variable

des statischen Typen

zugreifen

• Diese ist hier aber nicht

explizit deklariert worden.

• Wir wollen auf die Variable

des statischen Typen

zugreifen

• Diese ist hier aber nicht

explizit deklariert worden.Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

int x =1

int y

int y

println(h2.y)

Die Pfeile sind eine “erbt

von” - Beziehung

• Konstruktoren setzen

Variablen auf spezifische,

oder im Notfall, Standard

werte. (null oder typ-spez.)

• Wir wollen auf die Variable

des statischen Typen

zugreifen

• Diese ist hier aber nicht

explizit deklariert worden.Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

int x =1

int y

int y

println(h2.y)

Die Pfeile sind eine “erbt

von” - Beziehung

Wie können wir etwas

vererben, was nicht

gesetzt wurde?

Konstruktoren

• Instanziierung von Subklassen:

• Erfordert das vorherige Ausführen des Superklassen-Konstruktors.

• Default-Konstruktor:

• Ruft automatisch den Konstruktor der Superklasse auf.

• Zweck:

• Aufrufen der Superklassen-Konstruktoren stellen sicher, dass alle
Attribute korrekt initialisiert werden.

• Sie bereiten das Objekt so vor, dass es direkt genutzt werden kann.

9

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y

int y

super()

super()

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y super()

super()

int y = 2int y = 2

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y super()

super()

int y = 2

int y = 2

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y = 1 super()

super()

int y = 2

int y = 2
int y = 1

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y = 1 super()

super()

int y = 2

int y = 2

int y = 1

Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x = 1

int y = 1 super()

super()

int y = 2

int y = 2

int y = 1
1

Konstruktoren

• Subklasse instanziieren:

• Erfordert die Instanziierung der Superklasse.

• Default-Konstruktor:

• Ruft automatisch den Konstruktor der Superklasse auf.

• Konstruktoren und Vererbung:

• Konstruktoren werden nicht vererbt.

• Sinn von Konstruktoren:

• Initialisierung von Attributen bei der Objekterstellung.

16

Im Hinterkopf behalten:

▪ Das bedeutet, dass alle Konstruktoren einer Subklasse,
implizit “super()” (also den Default-Konstruktor der
Superklasse) aufrufen, wenn ansonsten im Subklassen-
Konstruktor kein expliziter super(…) (mit oder ohne
Argumente) Aufruf stattfindet.

▪ Grund: Instanziierung einer Subklasse erfordert immer auch
die Instanziierung der Superklasse.

17

Parametrisierte Konstruktoren

18

• Default-Konstruktor überschrieben:

• Wenn der Default-Konstruktor der Superklasse durch einen parametrisierten
Konstruktor ersetzt wird.

• super(...) erforderlich:

• super(...) muss explizit aufgerufen werden, um den Konstruktor der Superklasse zu
nutzen.

• Parameterreihenfolge beachten:

• Die Reihenfolge und Anzahl der Parameter in super(...) muss identisch mit der des
Superklassenkonstruktors sein.

• Fehler vermeiden:

• Kein Aufruf von super(...) führt zu einem Kompilierungsfehler.

Beispiel

19

Wir sind

gezwungen explizit

super() aufzurufen

- auch wenn es

keinen Unterschied

macht.

20

Beispiel

Interfaces

Interfaces
• Definition:

• Legen das Verhalten fest, das eine Klasse haben muss, um das Interface zu
implementieren.

• Implementierung der Methoden:

• Das Interface gibt nur die Methodensignaturen vor – die Implementierung
erfolgt in der Klasse.

• Keine Attribute:

• Interfaces enthalten keine Attribute, nur Konstanten.

• Eigenschaften von Attributen:

• Alle Konstanten in einem Interface sind public, static und final.

• Konstanten gehören zum Interface und sind unveränderlich.

22

public class Auto {

}

public Auto implements Fahrzeug {

// Vorgeschrieben durch Fahrzeug Implementierung

public void start() {}

public void stop() {}

public void checkSystem() {}

public void fahrmodusWechsel() {}

public FahrModus aktuellerFahrmodus() {}

}

Wir können auch mehrere Interfaces implementieren

public Auto implements Fahrzeug, Schluessel {

// Vorgeschrieben durch Fahrzeug Implementierung

public void start() {}

public void stop() {}

public void checkSystem() {}

public void fahrmodusWechsel() {}

public FahrModus aktuellerFahrmodus() {}

// Vorgeschrieben durch Schluessel Implementierung

public void neuerSchlüssel(String id) {}

public void verriegeln() {}

public void entriegeln() {}

public void fenster(boolean hoch) {}

}

Wir können auch mehrere Interfaces implementieren

Interfaces: Intuition

• Definition:

• Ein Interface definiert einheitliche Regeln für Klassen.

• Grundidee:

• Klassen müssen eine vorgegebene Grundstruktur erfüllen.

• Die Implementierung der Details bleibt der Klasse überlassen.

27

Interfaces: Aus Sicht des Compilers

• Pflicht zur Implementierung:

• Alle Methoden des Interfaces müssen in der implementierenden Klasse definiert
werden.

• "Vererbung" der Methodennamen:

• Nur die Signaturen der Methoden werden übernommen – die Implementierung erfolgt
durch die Klasse.

• Klare Regeln:

• Stellt sicher, dass alle Klassen mit dem Interface einheitliche Methoden bereitstellen.

• Wichtig:

• Interfaces sind keine Klassen, sondern reine "Verträge".

• Eine Klasse kann mehrere Interfaces gleichzeitig implementieren.

28

B

A

C

FD E
F h2 = new F()

println(h2.a())

interface I1 {
void a();
void b(); }

interface I2 {
void c();
void d(); }

void a(){…}
void b(){…}
void c(){…}
void d(){…}

I1 h1 = new C()

println(h1.a())

I2 h = new B()

println(h.a())

Vollständig definiert:

void a(){…}
void b(){…}
void c(){…}
void d(){…}

I2 h = new B()

println(h.a())

Vollständig definiert:

Dynamic Binding müsste

eigentlich funktionieren,

oder?

Der Compiler überprüft, ob

die Methode im statischen

Typ abrufbar ist:

a ist auf I2 nicht definiert.

Dies führt zu einem

Compiler-Fehler!

B

A

C

FD E

interface I1 {
void a();
void b(); }

interface I2 {
void c();
void d(); }

B m1 x=100

B m1 x=100

Compile-Fehler

Compile-Fehler

R m1 i=2

R m1 x=400

S m1 i=3

S m1 x=200

Compile-Fehler

Loop Detection with Sets

Zyklen finden

• Oft: Annahme, dass keine
Zyklen vorkommen.

• Problem: Was wenn doch
Zyklen vorkommen dürfen?

35

𝑟6

𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Zyklen finden

• Option 1: Modifizieren der
Datenstruktur mit einen
visited Attribut. (u09)

• Option 2: Nutzen von Sets
um besuchte Nodes zu
speichern.

36

𝑟6

𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Zyklen finden

• Wie unterscheiden wir zwei Objekte?

• equals können wir nicht immer nutzen!

37

age = 2 age = 2
Room@29ca901e Room@5025a98f

public boolean equals(Object o) {
if(o instanceof Room) {

o = (Room)o;
if(this.age == o.age) {

return true;
}

}
return false;

}

equals(,)

true

Zyklen finden

• Wie unterscheiden wir zwei Objekte?

• Hier können wir Referenzen
vergleichen!

38

age = 2 age = 2
Room@29ca901e Room@5025a98f

public boolean equals(Object o) {
if(o instanceof Room) {

if(this == o) {
return true;

}
}
return false;

}
equals(,)

false

Zyklen finden

• Mit Sets: Nutzen von
Set<Room> um alle
besuchten Nodes zu
speichern.

• Option 1: HashSet<Room>

• Option 2: TreeSet<Room>

39

𝑟6

𝑟2

𝑟3

𝑟4

𝑟5

𝑟7

Zyklen finden

• Option 1: HashSet<Room>

• Die Methoden equals und hashcode der Objekt-Klasse
überschreiben.

• Option 2: TreeSet<Room>

• Comparable-Interface implementieren und compareTo-Methode
überschreiben.

40

Zyklen finden: HashSet

• Option 1: HashSet<Room>

• In IntelliJ: Rechtsclick ->
Generate… -> Generate
hashcode() und equals()

41

Zyklen finden: HashSet

• Option 1: HashSet<Room>

• In IntelliJ: Rechtsclick ->
Generate… -> Generate
hashcode() und equals()

42

Option wählen

Zyklen finden: HashSet

• Option 1: HashSet<Room>

• In IntelliJ: Rechtsclick ->
Generate… -> Generate
hashcode() und equals()

43

Zyklen finden: HashSet

• Option 1: HashSet<Room>

44

Wir benutzen Operationen und

Methoden von Superklassen um

hashCode zu implementieren.

Zyklen finden: HashSet

• Option 1: HashSet<Room>

45

Objekte von

unterschiedlichem

Typ sind nie equals.

Zyklen finden: HashSet

• Option 1: HashSet<Room>

46

Attribute vergleichen.

Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

47

Damit TreeSet funktioniert muss Room das

Comparable-Interface implementieren.

Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

48

Jetzt müssen wir nur noch die compareTo-Methode

sinnvoll implementieren.

Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• compareTo gibt 0 zurück, falls die Objekte equals sind.

• compareTo gibt 1 zurück, falls this-Objekt „grösser“ als das
Parameter-Objekt ist.

• compareTo gibt -1 zurück, falls this-Objekt „kleiner“ als das
Parameter-Objekt ist.

49

Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

50

Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• Wenn Comparable implementiert ist, dann können wir mit
Collections.sort sortieren.

• Wenn Comparable implementiert ist, dann können wir mittels
PriorityQueue<Room> einen Heap erstellen.

• Mit Collections.reverseOrder() können wir von aufsteigender
Ordnung zu absteigender Ordnung wechseln.

51

Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• Wenn Comparable implementiert ist, dann können wir mit
Collections.sort sortieren.

52

Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• Wenn Comparable implementiert ist, dann können wir mittels
PriorityQueue<Room> einen Heap erstellen.

53

Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• Mit Collections.reverseOrder() können wir von aufsteigender
Ordnung zu absteigender Ordnung wechseln.

54

Maps

Maps

• Option 1: HashMap

• Die Methoden equals und hashcode der Objekt-Klasse
überschreiben.

• Option 2: TreeMap

• Comparable-Interface implementieren und compareTo-Methode
überschreiben.

56

Vorgehen bei der Programmierprüfung

▪ Alle Aufgaben überfliegen.

▪ Mit der einfachsten Aufgabe beginnen:

▪ Aufgabenstellung gut durchlesen

▪ Programmieren

▪ Überblick über Klassen verschaffen und nützliche Attribute zu
Helferklassen hinzufügen / Methoden für Interfaces implementieren

▪ Falls noch Zeit bleibt: Fehlende Testcases selbst schreiben

▪ Falls nach ca. 30 min (je nach Umfang der Aufgabe) noch nicht
fertig: Zur nächsten Aufgabe weitergehen

57

Vorbesprechung

Aufgabe 1:
Loop-

Invariante

Aufgabe 2:
Maps

Aufgabe 3:
Generische

Listen

Aufgabe 4:
Notenauswertung

Aufgabe 4:
Notenauswertung

Aufgabe 5:
Interpreter

Aufgabe 6:
Compiler

Aufgabe 6:
Compiler

Aufgabe 7:
EBNF-
Baum

Nachbesprechung

Aufgabe 1:
Cyclic List

Aufgabe 2:
Loop-

Invariante

Aufgabe 2:
Loop-

Invariante

Aufgabe 3:
Expression
Evaluator

Aufgabe 4:
Contact
Tracing

	Slide 1
	Slide 2: Organisatorisches
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9: Konstruktoren
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16: Konstruktoren
	Slide 17: Im Hinterkopf behalten:
	Slide 18: Parametrisierte Konstruktoren
	Slide 19
	Slide 20
	Slide 21: Interfaces
	Slide 22: Interfaces
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27: Interfaces: Intuition
	Slide 28: Interfaces: Aus Sicht des Compilers
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34: Loop Detection with Sets
	Slide 35: Zyklen finden
	Slide 36: Zyklen finden
	Slide 37: Zyklen finden
	Slide 38: Zyklen finden
	Slide 39: Zyklen finden
	Slide 40: Zyklen finden
	Slide 41: Zyklen finden: HashSet
	Slide 42: Zyklen finden: HashSet
	Slide 43: Zyklen finden: HashSet
	Slide 44: Zyklen finden: HashSet
	Slide 45: Zyklen finden: HashSet
	Slide 46: Zyklen finden: HashSet
	Slide 47: Zyklen finden: TreeSet
	Slide 48: Zyklen finden: TreeSet
	Slide 49: Zyklen finden: TreeSet
	Slide 50: Zyklen finden: TreeSet
	Slide 51: Zyklen finden: TreeSet
	Slide 52: Zyklen finden: TreeSet
	Slide 53: Zyklen finden: TreeSet
	Slide 54: Zyklen finden: TreeSet
	Slide 55: Maps
	Slide 56: Maps
	Slide 57: Vorgehen bei der Programmierprüfung
	Slide 58: Vorbesprechung
	Slide 59: Aufgabe 1: Loop-Invariante
	Slide 60: Aufgabe 2: Maps
	Slide 61: Aufgabe 3: Generische Listen
	Slide 62: Aufgabe 4: Notenauswertung
	Slide 63: Aufgabe 4: Notenauswertung
	Slide 64: Aufgabe 5: Interpreter
	Slide 65: Aufgabe 6: Compiler
	Slide 66: Aufgabe 6: Compiler
	Slide 67: Aufgabe 7: EBNF-Baum
	Slide 68: Nachbesprechung
	Slide 69: Aufgabe 1: Cyclic List
	Slide 70: Aufgabe 2: Loop-Invariante
	Slide 71: Aufgabe 2: Loop-Invariante
	Slide 72: Aufgabe 3: Expression Evaluator
	Slide 73: Aufgabe 4: Contact Tracing

