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Organisatorisches

▪ Mein Name: Timo Stucki

▪ Bei Fragen: tistucki@student.ethz.ch

▪ Mails bitte mit «[EProg25]» im Betreff

▪ Neue Aufgaben: Dienstag Abend (im Normalfall)

▪ Abgabe der Übungen bis Dienstag Abend (23:59) Folgewoche

▪ Abgabe immer via Git

▪ Lösungen in separatem Projekt auf Git
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Tier

Hund

Husky

Konstruktoren

Die Pfeile sind eine “erbt

von” - Beziehung

• Ein Hund ist ein Tier.

• Nicht alle Tiere sind ein Hund.

• Ein Husky ist ein Tier und ein

Hund.

• Wir wollen sichergehen, dass

Attribute richtig vererbt

werden
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Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel



Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

int x =1

int y =1

int y = 2

Hund h = new Hund()

Tier t = new Hund()

println(h2.y)

println(h.y)

println(t.y) 2

1

1



Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

int x =1

int y =1

int y = 2

println(h2.y)

Die Pfeile sind eine “erbt 

von” - Beziehung

• Wir wollen auf die Variable 

des statischen Typen

zugreifen

• Diese ist hier aber nicht

explizit deklariert worden.



• Wir wollen auf die Variable 

des statischen Typen 

zugreifen

• Diese ist hier aber nicht 

explizit deklariert worden.Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

int x =1

int y

int y

println(h2.y)

Die Pfeile sind eine “erbt 

von” - Beziehung

• Konstruktoren setzen 

Variablen auf spezifische, 

oder im Notfall, Standard 

werte. (null oder typ-spez.)



• Wir wollen auf die Variable 

des statischen Typen 

zugreifen

• Diese ist hier aber nicht 

explizit deklariert worden.Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

int x =1

int y

int y

println(h2.y)

Die Pfeile sind eine “erbt 

von” - Beziehung

Wie können wir etwas

vererben, was nicht

gesetzt wurde?



Konstruktoren

• Instanziierung von Subklassen:

• Erfordert das vorherige Ausführen des Superklassen-Konstruktors.

• Default-Konstruktor:

• Ruft automatisch den Konstruktor der Superklasse auf.

• Zweck:

• Aufrufen der Superklassen-Konstruktoren stellen sicher, dass alle 
Attribute korrekt initialisiert werden.

• Sie bereiten das Objekt so vor, dass es direkt genutzt werden kann.
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Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y

int y

super()

super()



Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y super()

super()

int y = 2int y = 2



Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y super()

super()

int y = 2

int y = 2



Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y = 1 super()

super()

int y = 2

int y = 2
int y = 1



Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x

int y = 1 super()

super()

int y = 2

int y = 2

int y = 1



Katze

Tier

Hund

HuskyLöwe Tiger

Konstruktoren - Beispiel

Husky h2 = new Husky()

println(h2.y)int x = 1

int y = 1 super()

super()

int y = 2

int y = 2

int y = 1
1



Konstruktoren

• Subklasse instanziieren:

• Erfordert die Instanziierung der Superklasse.

• Default-Konstruktor:

• Ruft automatisch den Konstruktor der Superklasse auf.

• Konstruktoren und Vererbung:

• Konstruktoren werden nicht vererbt.

• Sinn von Konstruktoren:

• Initialisierung von Attributen bei der Objekterstellung.
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Im Hinterkopf behalten:

▪ Das bedeutet, dass alle Konstruktoren einer Subklasse, 
implizit “super()” (also den Default-Konstruktor der 
Superklasse) aufrufen, wenn ansonsten im Subklassen-
Konstruktor kein expliziter super(…) (mit oder ohne
Argumente) Aufruf stattfindet.

▪ Grund: Instanziierung einer Subklasse erfordert immer auch
die Instanziierung der Superklasse.
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Parametrisierte Konstruktoren

18

• Default-Konstruktor überschrieben:

• Wenn der Default-Konstruktor der Superklasse durch einen parametrisierten 
Konstruktor ersetzt wird.

• super(...) erforderlich:

• super(...) muss explizit aufgerufen werden, um den Konstruktor der Superklasse zu 
nutzen.

• Parameterreihenfolge beachten:

• Die Reihenfolge und Anzahl der Parameter in super(...) muss identisch mit der des 
Superklassenkonstruktors sein.

• Fehler vermeiden:

• Kein Aufruf von super(...) führt zu einem Kompilierungsfehler.



Beispiel

19

Wir sind 

gezwungen explizit 

super() aufzurufen 

- auch wenn es 

keinen Unterschied 

macht.
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Beispiel



Interfaces



Interfaces
• Definition:

• Legen das Verhalten fest, das eine Klasse haben muss, um das Interface zu 
implementieren.

• Implementierung der Methoden:

• Das Interface gibt nur die Methodensignaturen vor – die Implementierung 
erfolgt in der Klasse.

• Keine Attribute:

• Interfaces enthalten keine Attribute, nur Konstanten.

• Eigenschaften von Attributen:

• Alle Konstanten in einem Interface sind public, static und final.

• Konstanten gehören zum Interface und sind unveränderlich.
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public class Auto {

}



public Auto implements Fahrzeug {

// Vorgeschrieben durch Fahrzeug Implementierung

public void start() {}

public void stop() {}

public void checkSystem() {}

public void fahrmodusWechsel() {}

public FahrModus aktuellerFahrmodus() {}

}

Wir können auch mehrere Interfaces implementieren



public Auto implements Fahrzeug, Schluessel {

// Vorgeschrieben durch Fahrzeug Implementierung

public void start() {}

public void stop() {}

public void checkSystem() {}

public void fahrmodusWechsel() {}

public FahrModus aktuellerFahrmodus() {}

// Vorgeschrieben durch Schluessel Implementierung

public void neuerSchlüssel(String id) {}

public void verriegeln() {}

public void entriegeln() {}

public void fenster(boolean hoch) {}

}

Wir können auch mehrere Interfaces implementieren



Interfaces: Intuition

• Definition:

• Ein Interface definiert einheitliche Regeln für Klassen.

• Grundidee:

• Klassen müssen eine vorgegebene Grundstruktur erfüllen.

• Die Implementierung der Details bleibt der Klasse überlassen.
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Interfaces: Aus Sicht des Compilers

• Pflicht zur Implementierung:

• Alle Methoden des Interfaces müssen in der implementierenden Klasse definiert 
werden.

• "Vererbung" der Methodennamen:

• Nur die Signaturen der Methoden werden übernommen – die Implementierung erfolgt 
durch die Klasse.

• Klare Regeln:

• Stellt sicher, dass alle Klassen mit dem Interface einheitliche Methoden bereitstellen.

• Wichtig:

• Interfaces sind keine Klassen, sondern reine "Verträge".

• Eine Klasse kann mehrere Interfaces gleichzeitig implementieren.
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B

A

C

FD E
F h2 = new F()

println(h2.a())

interface I1 {
void a();
void b(); }

interface I2 {
void c();
void d(); }

void a(){…}
void b(){…}
void c(){…}
void d(){…}

I1 h1 = new C()

println(h1.a())

I2 h = new B()

println(h.a())

Vollständig definiert:



void a(){…}
void b(){…}
void c(){…}
void d(){…}

I2 h = new B()

println(h.a())

Vollständig definiert:

Dynamic Binding müsste 

eigentlich funktionieren, 

oder?

Der Compiler überprüft, ob 

die Methode im statischen 

Typ abrufbar ist:

a ist auf I2 nicht definiert.

Dies führt zu einem 

Compiler-Fehler!

B

A

C

FD E

interface I1 {
void a();
void b(); }

interface I2 {
void c();
void d(); }





B m1 x=100

B m1 x=100

Compile-Fehler

Compile-Fehler



R m1 i=2

R m1 x=400

S m1 i=3

S m1 x=200

Compile-Fehler



Loop Detection with Sets



Zyklen finden

• Oft: Annahme, dass keine 
Zyklen vorkommen.

• Problem: Was wenn doch 
Zyklen vorkommen dürfen?
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𝑟6

𝑟2

𝑟3

𝑟4

𝑟5

𝑟7



Zyklen finden

• Option 1: Modifizieren der 
Datenstruktur mit einen 
visited Attribut. (u09)

• Option 2: Nutzen von Sets 
um besuchte Nodes zu 
speichern.
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Zyklen finden

• Wie unterscheiden wir zwei Objekte?

• equals können wir nicht immer nutzen!

37

age = 2 age = 2
Room@29ca901e Room@5025a98f

public boolean equals(Object o) {
if(o instanceof Room) {

o = (Room)o; 
if(this.age == o.age) {

return true;
}

}
return false;

} 

equals(      ,       )

true



Zyklen finden

• Wie unterscheiden wir zwei Objekte?

• Hier können wir Referenzen                                                             
vergleichen!
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age = 2 age = 2
Room@29ca901e Room@5025a98f

public boolean equals(Object o) {
if(o instanceof Room) {

if(this == o) {
return true;

}
}
return false;

} 
equals(      ,       )

false



Zyklen finden

• Mit Sets: Nutzen von 
Set<Room> um alle 
besuchten Nodes zu 
speichern.

• Option 1: HashSet<Room>

• Option 2: TreeSet<Room>
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Zyklen finden

• Option 1: HashSet<Room>

• Die Methoden equals und hashcode der Objekt-Klasse 
überschreiben.

• Option 2: TreeSet<Room>

• Comparable-Interface implementieren und compareTo-Methode 
überschreiben.
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Zyklen finden: HashSet

• Option 1: HashSet<Room>

• In IntelliJ: Rechtsclick -> 
Generate… -> Generate 
hashcode() und equals()

41



Zyklen finden: HashSet

• Option 1: HashSet<Room>

• In IntelliJ: Rechtsclick -> 
Generate… -> Generate 
hashcode() und equals()
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Option wählen



Zyklen finden: HashSet

• Option 1: HashSet<Room>

• In IntelliJ: Rechtsclick -> 
Generate… -> Generate 
hashcode() und equals()
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Zyklen finden: HashSet

• Option 1: HashSet<Room>

44

Wir benutzen Operationen und 

Methoden von Superklassen um 

hashCode zu implementieren.



Zyklen finden: HashSet

• Option 1: HashSet<Room>

45

Objekte von 

unterschiedlichem

Typ sind nie equals.



Zyklen finden: HashSet

• Option 1: HashSet<Room>

46

Attribute vergleichen.



Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

47

Damit TreeSet funktioniert muss Room das 

Comparable-Interface implementieren.



Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

48

Jetzt müssen wir nur noch die compareTo-Methode 

sinnvoll implementieren.



Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• compareTo gibt 0 zurück, falls die Objekte equals sind. 

• compareTo gibt 1 zurück, falls this-Objekt „grösser“ als das 
Parameter-Objekt ist. 

• compareTo gibt -1 zurück, falls this-Objekt „kleiner“ als das 
Parameter-Objekt ist. 
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Zyklen finden: TreeSet

• Option 2: TreeSet<Room>
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Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• Wenn Comparable implementiert ist, dann können wir mit 
Collections.sort sortieren.

• Wenn Comparable implementiert ist, dann können wir mittels 
PriorityQueue<Room> einen Heap erstellen.

• Mit Collections.reverseOrder() können wir von aufsteigender 
Ordnung zu absteigender Ordnung wechseln.
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Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• Wenn Comparable implementiert ist, dann können wir mit 
Collections.sort sortieren.
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Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• Wenn Comparable implementiert ist, dann können wir mittels 
PriorityQueue<Room> einen Heap erstellen.
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Zyklen finden: TreeSet

• Option 2: TreeSet<Room>

• Mit Collections.reverseOrder() können wir von aufsteigender 
Ordnung zu absteigender Ordnung wechseln.
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Maps



Maps

• Option 1: HashMap

• Die Methoden equals und hashcode der Objekt-Klasse 
überschreiben.

• Option 2: TreeMap

• Comparable-Interface implementieren und compareTo-Methode 
überschreiben.

56



Vorgehen bei der Programmierprüfung

▪ Alle Aufgaben überfliegen.

▪ Mit der einfachsten Aufgabe beginnen:

▪ Aufgabenstellung gut durchlesen

▪ Programmieren

▪ Überblick über Klassen verschaffen und nützliche Attribute zu
Helferklassen hinzufügen / Methoden für Interfaces implementieren

▪ Falls noch Zeit bleibt: Fehlende Testcases selbst schreiben

▪ Falls nach ca. 30 min (je nach Umfang der Aufgabe) noch nicht 
fertig: Zur nächsten Aufgabe weitergehen
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Vorbesprechung



Aufgabe 1: 
Loop-

Invariante



Aufgabe 2: 
Maps



Aufgabe 3: 
Generische 

Listen



Aufgabe 4: 
Notenauswertung



Aufgabe 4: 
Notenauswertung



Aufgabe 5: 
Interpreter



Aufgabe 6: 
Compiler



Aufgabe 6: 
Compiler



Aufgabe 7: 
EBNF-
Baum



Nachbesprechung



Aufgabe 1: 
Cyclic List



Aufgabe 2: 
Loop-

Invariante



Aufgabe 2: 
Loop-

Invariante



Aufgabe 3: 
Expression 
Evaluator



Aufgabe 4: 
Contact 
Tracing
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